Person re-identification becomes a more and more important task due to its wide applications. In practice, person re-identification still remains challenging due to the variation of person pose, different lighting, occlusion, misalignment, background clutter, etc. In this paper, we propose a multi-scale body-part mask guided attention network (MMGA), which jointly learns whole-body and partbody attention to help extract global and local features simultaneously. In MMGA, body-part masks are used to guide the training of corresponding attention. Experiments show that our proposed method can reduce the negative influence of variation of person pose, misalignment and background clutter. Our method achieves rank-1/mAP of 95.0%/87.2% on the Market1501 dataset, 89.5%/78.1% on the DukeMTMC-reID dataset, outperforming current stateof-the-art methods.
Person re-identification (re-ID) aims to retrieve the same person across different cameras. In practice, it still remains a challenging task due to background clutter, variations on body poses and view conditions, inaccurate bounding box detection, etc. To tackle these issues, in this paper, we propose a novel multi-receptive field attention (MRFA) module that utilizes filters of various sizes to help network focusing on informative pixels. Besides, we present a view-specific mechanism that guides attention module to handle the variation of view conditions. Moreover, we introduce a Gaussian horizontal random cropping/padding method which further improves the robustness of our proposed network. Comprehensive experiments demonstrate the effectiveness of each component. Our method achieves 95.5% / 88.1% in rank-1 / mAP on Market-1501, 88.9% / 80.0% on DukeMTMC-reID, 81.1% / 78.8% on CUHK03 labeled dataset and 78.9% / 75.3% on CUHK03 detected dataset, outperforming current state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.