Based on the status that the reinforced soil retaining wall (RSRW) is difficult to popularize in highway in high earthquake intensity region of China. The dynamic behavior of modular-block RSRW was investigated by large-scale shaking table tests. The standard soil was taken as the backfill. The concrete blocks were selected as panel. The geogrid was reinforcement. The failure mode of the wall was observed, and dynamic response and the displacements were measured. The results showed that, the middle of retaining wall panel was slightly bulged under the inputted earthquake motion, the mortar on the surface of wall was breaking down. When the input motion was WL2.0g (model scale: 1/2), the blocks at the top fell down, then the retaining wall was destroyed. The settlements of the soil and lateral displacement of the wall increased with the increase of the acceleration motion. The acceleration amplification factor is decreased with the increase of input acceleration. When the input acceleration was larger than 0.8g, the acceleration amplification factor of upper wall gradually is decreased less than 1. When model scale and inputting earthquake motion is different, the range of acceleration amplification factor is different. Shaking table tests results of RSRW with different panel forms and reinforced materials are summarized. The results show that seismic behaviour of RSRW is excellent. It is advise to revise some items of “Chinese Specification of Seismic Design for Highway Engineering” in order to promote the application of RSRW in highway.
This paper presents experimental results from shaking table tests on two reduced-scale geogrid reinforced soil-retaining walls (RSRWs) constructed using standard soil, modular facing blocks, and uniaxial geogrid reinforcement to investigate the distribution of the geogrid strain and the mode of potential failure surface for dynamic loading conditions. Similitude relationships for shaking table tests in a 1 g gravitational field were used to scale the specimen geometry, applied characteristics of the earthquake motions. The lateral displacement of the top model is sufficiently large for the top-model block to fall down, and the RSRW is thus destroyed. The tensile strain at the lower part is greater than that at the upper part of the RSRW. The tensile strain in different layers for two-tiered RSRW is consistent with single-step RSRW. On comparing the measured maximum tensile strain lines of the geogrid with the result of the existing calculation method of the potential failure surface, it can be observed that the existing partial calculation method is conservative. Based on the calculation methods of various potential failure surfaces and the measured data, the use of a two-tiered fold-line failure surface is proposed for the two-tiered RSRW while taking into consideration the width of the platform. And it is advised that the failure surface calculation method of BS8006 be used as the calculation method for the potential failure surface of the single-step RSRW under dynamic motion.
The interaction between reinforcement and soil is a key problem in the application of geosynthetics as reinforcement in geotechnical engineering. In this study, tensile and pull-out tests on a uniaxial geogrid were carried out using self-designed tensile and pull-out test equipment. The tensile test evaluated the tensile load–strain characteristics of a geogrid. Under the condition of lateral confinement, the tensile force and secant tensile stiffness of the geogrid increased with an increase in the normal stress when the strain was constant, and the secant tensile stiffness decreased with a decrease in the tensile rate. The stiffness coefficient was used to quantitatively describe the change in the stiffness of the reinforcement. Using the pull-out test, the variation laws of the pull-out force of the geogrid under different normal stresses and different longitudinal rib percentages were obtained. When the geogrid was broken, the pull-out force of the same type of geogrid was not significantly different under different normal stresses. With an increase in the longitudinal rib percentage, the pull-out force of the geogrid under the same normal stress gradually increased, and the apparent friction coefficient was obtained by analysis. The results of the apparent friction coefficient obtained by the analytical method in accordance with French specifications (NF P94-270-2020) are relatively safe compared to the experimental values.
This study presents experimental results from shaking table tests on a reduced-scale geogrid reinforced soil retaining wall (RSRW) to investigate the seismic response of the fundamental frequency, acceleration amplification, face displacement, backfill surface settlement, and reinforcement strain under different peak accelerations and durations. The fundamental frequency is in good agreement with the predicted values. The root mean square (RMS) acceleration amplification factors increase nonlinearly with the wall height and decrease with increasing seismic load, which is not regarded as a constant value. The distributions of the peak displacement are consistent with those of the residual displacement. The combination of the sliding and rotation is observed as the predominant mode of displacement, and the rotation mode is dominant. The positions near the face (35 cm) and the ends of the reinforcement (140 cm) demonstrated larger settlement than that of the central position (70 cm and 105 cm). The reinforcement strain increased with increasing peak acceleration and maximum values measured at the central layers. The trends of the potential failure surface are similar to those of the 0.3H bilinear failure surface. The friction coefficient is nonlinearly distributed along with the reinforcements, and the maximum friction coefficient appears at the top layer (F11).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.