Video object detection is a tough task due to the deteriorated quality of video sequences captured under complex environments. Currently, this area is dominated by a series of feature enhancement based methods, which distill beneficial semantic information from multiple frames and generate enhanced features through fusing the distilled information. However, the distillation and fusion operations are usually performed at either frame level or instance level with external guidance using additional information, such as optical flow and feature memory. In this work, we propose a dual semantic fusion network (abbreviated as DSFNet) to fully exploit both frame-level and instance-level semantics in a unified fusion framework without external guidance. Moreover, we introduce a geometric similarity measure into the fusion process to alleviate the influence of information distortion caused by noise. As a result, the proposed DSFNet can generate more robust features through the multi-granularity fusion and avoid being affected by the instability of external guidance. To evaluate the proposed DSFNet, we conduct extensive experiments on the ImageNet VID dataset. Notably, the proposed dual semantic fusion network achieves, to the best of our knowledge, the best performance of 84.1% mAP among the current state-of-the-art video object detectors with ResNet-101 and 85.4% mAP with ResNeXt-101 without using any post-processing steps.
CCS CONCEPTS• Computing methodologies → Object detection.
DFDNetECCV 20 Figure 1: Comparisons with state-of-the-art face restoration methods: HiFaceGAN [69], DFDNet [46], Wan et al. [63] and PULSE [54] on the real-world low-quality images. While previous methods struggle to restore faithful facial details or retain face identity, our proposed GFP-GAN achieves a good balance of realness and fidelity with much less artifacts. In addition, the powerful generative facial prior allows us to perform restoration and color enhancement jointly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.