We report the observation of giant magnetoresistance near room temperature in ferromagnetic films of La1−xSrxMnOz for 0.16≤x≤0.33. For B=5 T, the maximum magnetoresistance ratio [R(0)−R(B)]/R(0) of an annealed film is 60% at 260 K for x=0.2, and 35% at 330 K for x=0.33. Annealed films have higher Curie temperature (Tc), a larger saturation moment and a larger magnetoresistance effect near Tc than do as-grown films. The temperature dependence of resistivity for all the samples investigated is unusual, activated above Tc and metallic below Tc. This and the giant magnetoresistance are possibly explained by scattering from magnetic polarons which dominate the transport near Tc.
The magnetoresistance of epitaxial Nd0.7Sr0.3MnOδ thin films has been studied. A giant magnetoresistance, with more than 4 orders of magnitude change in resistance (−ΔR/RH≳106%), was obtained at ∼60 K and a magnetic field of 8 T. This giant magnetoresistance (GMR) ratio is about one order of magnitude larger than the highest value reported previously which was observed in La–Ca–Mn–O film. We have also obtained a large GMR ratio with −ΔR/RH≳3000% for H=5 T in an in situ Nd0.7Sr0.3MnOδ thin film, a much larger effect than the previous results in doped manganese oxide films in which a large GMR ratio was obtained only in postannealed samples. Our results also show that the GMR effect in these films can be strongly influenced by the thin-film preparation conditions.
Massive fabrication of free-standing Co/Pt magnetic barcode nanowires with well-defined interfaces and layer thicknesses is obtained after freeing them from porous templates. Such barcodes display bamboo-like shapes with identical motifs either inside or out of the templates. The ferromagnetism of these barcode nanowires can be modulated easily depending on the cobalt segments and shape anisotropies. Further enhancements of the ferromagnetism of Co/Pt barcodes are also accomplished through interfacial alloying processes via a thermally induced phase transition.
We report measurements of the structural, optical, transport, and magnetic properties of single crystals of the anisotropic p-type transparent semiconductor CuAlO 2. The indirect and direct band gaps are 2.97 and 3.47 eV, respectively. Temperature-dependent Hall measurements yield a positive Hall coefficient in the measured range and an activated carrier temperature dependence. The resistivity is anisotropic, with the ab-plane resistivity about 25 times smaller than the c-axis resistivity at room temperature. Both are activated with similar activation energies. The room-temperature ab-plane mobility is relatively large at 3 cm 2 V −1 s −1 , and we infer a c-axis mobility of 0.12 cm 2 V −1 s −1. The Seebeck coefficient is positive at all measured temperatures, and has a T −1 dependence over most of the measured range. The low-temperature paramagnetic moment is consistent with a spin-1/2 defect with a density of 3.4ϫ 10 20 cm −3. These results suggest that the conduction mechanism for p-type carriers in CuAlO 2 is charge transport in the valence band and that the holes are thermally activated from copper-vacancy acceptor states located about 700 meV above the valence-band maximum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.