Two hundred and fifty bread wheat lines, mainly Chinese mini core accessions, were assayed for polymorphism and linkage disequilibrium (LD) based on 512 whole-genome microsatellite loci representing a mean marker density of 5.1 cM. A total of 6,724 alleles ranging from 1 to 49 per locus were identified in all collections. The mean PIC value was 0.650, ranging from 0 to 0.965. Population structure and principal coordinate analysis revealed that landraces and modern varieties were two relatively independent genetic sub-groups. Landraces had a higher allelic diversity than modern varieties with respect to both genomes and chromosomes in terms of total number of alleles and allelic richness. 3,833 (57.0%) and 2,788 (41.5%) rare alleles with frequencies of <5% were found in the landrace and modern variety gene pools, respectively, indicating greater numbers of rare variants, or likely new alleles, in landraces. Analysis of molecular variance (AMOVA) showed that A genome had the largest genetic differentiation and D genome the lowest. In contrast to genetic diversity, modern varieties displayed a wider average LD decay across the whole genome for locus pairs with r2>0.05 (P<0.001) than the landraces. Mean LD decay distance for the landraces at the whole genome level was <5 cM, while a higher LD decay distance of 5–10 cM in modern varieties. LD decay distances were also somewhat different for each of the 21 chromosomes, being higher for most of the chromosomes in modern varieties (<5∼25 cM) compared to landraces (<5∼15 cM), presumably indicating the influences of domestication and breeding. This study facilitates predicting the marker density required to effectively associate genotypes with traits in Chinese wheat genetic resources.
Chinese wheat mini core collection (262 accessions) was genotyped at 531 microsatellite loci representing a mean marker density of 5.1 cM. One-thousand-kernel weights (TKW) of lines were measured in five trials (three environments in four growing seasons). Structure analysis based on 42 unlinked SSR loci indicated that the materials formed two sub-populations, viz., landraces and modern varieties. A large difference in TKW (7.08 g, P<0.001) was found between the two sub-groups. Therefore, TKW is a major yield component that was improved in the past 6 decades; it increased from a mean 31.5 g in the 1940s to 44.64 g in the 2000s, representing a 2.19 g increase in each decade. Analyses based on a mixed linear model (MLM), population structure (Q) and relative kinship (K) revealed 22 SSR loci that were significantly associated with mean TKW (MTKW) of the five trials estimated by the best linear unbiased predictor (BLUP) method. They were mainly distributed on chromosomes of homoeologous groups 1, 2, 3, 5 and 7. Six loci, cfa2234-3A, gwm156-3B, barc56-5A, gwm234-5B, wmc17-7A and cfa2257-7A individually explained more than 11.84% of the total phenotypic variation. Favored alleles for breeding at the 22 loci were inferred according to their estimated effects on MTKW based on mean difference of varieties grouped by genotypes. Statistical simulation showed that these favored alleles have additive genetic effects. Frequency changes of alleles at loci associated with TKW are much more dramatic than those at neutral loci between the sub-groups. The numbers of favored alleles in modern varieties indicate there is still considerable genetic potential for their use as markers for genome selection of TKW in wheat breeding. Alleles that can be used globally to increase TKW were inferred according to their distribution by latitude and frequency of changes between landraces and the modern varieties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.