Anthocyanins have high antioxidant activities, and engineering of anthocyanin biosynthesis in staple crops, such as rice (Oryza sativa L.), could provide health-promoting foods for improving human health. However, engineering metabolic pathways for biofortification remains difficult, and previous attempts to engineer anthocyanin production in rice endosperm failed because of the sophisticated genetic regulatory network of its biosynthetic pathway. In this study, we developed a high-efficiency vector system for transgene stacking and used it to engineer anthocyanin biosynthesis in rice endosperm. We made a construct containing eight anthocyanin-related genes (two regulatory genes from maize and six structural genes from Coleus) driven by the endosperm-specific promoters,plus a selectable marker and a gene for marker excision. Transformation of rice with this construct generated a novel biofortified germplasm "Purple Endosperm Rice" (called "Zijingmi" in Chinese), which has high anthocyanin contents and antioxidant activity in the endosperm. This anthocyanin production results from expression of the transgenes and the resulting activation (or enhancement) of expression of 13 endogenous anthocyanin biosynthesis genes that are silenced or expressed at low levels in wild-type rice endosperm. This study provides an efficient, versatile toolkit for transgene stacking and demonstrates its use for successful engineering of a sophisticated biological pathway, suggesting the potential utility of this toolkit for synthetic biology and improvement of agronomic traits in plants.
The human immunodeficiency virus type 1 (HIV-1) integrase protein (IN) is essential for integration of the viral DNA into host cell chromosomes. Since IN is expressed and assembled into virions as part of the 160-kDa Gag-Pol precursor polyprotein and catalyzes integration of the provirus in infected cells as a mature 32-kDa protein, mutations in IN are pleiotropic and may affect virus replication at different stages of the virus life cycle in addition to integration. Several different phenotypes have been observed for IN mutant viruses, including defects in virion morphology, protein composition, reverse transcription, nuclear import, and integration. Because the effects of mutations in the IN domain of Gag-Pol can not always be distinguished from those of mutations in the mature IN protein, there remains a significant gap in our understanding of IN function in vivo. To directly analyze the function of the mature IN protein itself, in the context of a replicating virus but independently from that of Gag-Pol, we used an approach developed in our laboratory for incorporating proteins into HIV virions by their expression in trans as fusion partners of either Vpr or Vpx. By providing IN intrans as a Vpr-IN fusion protein, our analysis revealed, for the first time, that the mature IN protein is essential for the efficient initiation of reverse transcription in infected cells and that this function does not require the IN protein to be enzymatically (integration) active. Our findings of a direct physical interaction between IN and reverse transcriptase and the failure of heterologous HIV-2 IN protein to efficiently support reverse transcription indicate that this novel function occurs through specific interactions with other viral components of the reverse transcription initiation complex. Studies involving complementation between integration- and DNA synthesis-defective IN mutants further support this conclusion and reveal that the highly conserved HHCC motif of IN is important for both activities. These findings provide important new insights into IN function and reverse transcription in the context of the nucleoprotein reverse transcription complex within the infected cell. Moreover, they validate a novel approach that obviates the need to mutate Gag-Pol in order to study the role of its individual mature components at the virus replication level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.