In the fi eld of nanomedicine, nanoparticles with various functions are required for in vivo applications such as biomedical imaging and drug delivery. Therefore, chemical functionalization of nanoparticles has been extensively investigated. Herein, nanodiamond (ND) coated with polyglycerol (PG) and its derivatives is reported to impart good solubility in a physiological environment, a stealth nature to avoid nonspecifi c uptake, a targeting property to be taken up by a specifi c cell, and an acid-responsive drug release property to kill cancer cells. ND is fi rst grafted with PG and the resulting ND-PG has a high solubility in physiological media. Since a large number of hydroxyl groups in PG provide scaffolds for further surface functionalization, the targeting RGD peptide and Pt-based drug are immobilized to give ND-PG-RGD, ND-PG-Pt and ND-PG-RGD-Pt. The ND with intrinsic fl uorescence is also functionalized by PG and RGD to confi rm cellular uptake and intracellular localization fl uorescently. The results of the cell experiments indicate that PG coating shielded fND from the uptake by HeLa and U87MG cells. In contrast, fND-PG-RGD is taken up by U87MG, not HeLa cells, exhibiting high targeting effi cacy. When ND-PG-RGD-Pt is applied, U87MG is selectively killed against HeLa. The multi-functional ND is a promising prodrug in targeting chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.