Agrotis ipsilon
(Lepidoptera: Noctuidae) is a major underground pest that damages many agricultural crops in China and other countries. A diet-incorporation-based bioassay was conducted to evaluate the sublethal effects of the novel anthranilic diamide chlorantraniliprole on the nutritional physiology, enzymatic properties and population parameters of this cutworm. Chlorantraniliprole exhibited signs of active toxicity against third instar larvae of
A
.
ipsilon
, and the LC
50
was 0.187 μg.g
−1
of artificial diet after treatment for 72 h. The development time of the larval, pupal and adult stages was significantly affected after chlorantraniliprole exposure, compared to the control treatment. Relative to the control treatment, chlorantraniliprole decreased pupal and adult emergence rates, fecundity and fertility and increased the proportions of developmental deformities, the adult preoviposition period (APOP) and the total preoviposition period (TPOP). Furthermore, compared to those treated with the control,
A
.
ipsilon
larvae treated with low doses of chlorantraniliprole decreased food utilization and nutrient content (protein, lipid, carbohydrate, trehalose), showed lower pupal weights and growth rates. Compared with the control treatment, chlorantraniliprole significantly reduced digestive enzyme activities and observably increased detoxifying and protective enzyme activities and hormone titers. Importantly, these chlorantraniliprole-induced changes affected life table parameters of the cutworm. These results suggest that chlorantraniliprole at low concentrations can impair
A
.
ipsilon
development duration, normal food consumption and digestion process, enzymatic properties, hormone levels, fecundity and population levels. Chlorantraniliprole exhibit the potential to be exploited as a control strategy for this cutworm.
Orthotropic steel deck (OSD) are widely used in steel bridges because of their many advantages, but the structures and stresses of OSD are complex and sensitive to fatigue. Based on the model test, the structural fatigue analysis of OSD is carried out by using the extended finite element method (XFEM) to understand and reveal the causes of fatigue detail cracks and the generation and propagation of fatigue cracks at the welding ends of diaphragms, U-ribs, and diaphragms, which are the main structural fatigue details of the deck. The results show that: the fatigue crack at the diaphragm opening is not caused by a single factor, but the horizontal relative displacement is the root-cause of the fatigue crack; the contribution of out-of-plane displacement to the fatigue crack is more significant than that of vertical displacement or in-plane stress, which often leads to the initiation and propagation of the fatigue crack; the crack-propagation direction is perpendicular to the contour of principal stress, and the crack propagates into the plate along the high-stress area in the horizontal direction, which is in accordance with the basic theory of crack propagation. The research methods can provide technical support for the design of similar structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.