Accumulated evidence strongly indicates that oxidative stress, characterized by an imbalance between reactive oxygen species (ROS) production and antioxidants in favor of oxidants, plays an important role in disease pathogenesis. However, ROS can act as signaling molecules and fulfill essential physiological functions at basal levels. Each ROS would be different in the extent to stimulate and contribute to different pathophysiological effects. Importantly, multiple ROS generators can be activated either concomitantly or sequentially by relevant signaling molecules for redox biological functions. Here, we summarized the current knowledge related to chemical and biochemical features of primary ROS species and corresponding antioxidants. Metabolic pathways of five major ROS generators and five ROS clearance systems were described, including their ROS products, specific ROS enriched tissue, cell and organelle, and relevant functional implications. We provided an overview of ROS generation and induction at different levels of metabolism. We classified 11 ROS species into three types based on their reactivity and target selectivity and presented ROS homeostasis and functional implications in pathological and physiological status. This article intensively reviewed and refined biochemical basis, metabolic signaling and regulation, functional insights, and provided guidance for the identification of novel therapeutic targets.
Pyroptotic cell death or pyroptosis is characterized by caspase-1-dependent formation of plasma membrane pores, leading to the release of pro-inflammatory cytokines and cell lysis. Pyroptosis tightly controls the inflammatory responses and coordinates antimicrobial host defenses by releasing pro-inflammatory cellular contents, such as interleukin (IL)-1β and IL-18, and consequently expands or sustains inflammation. It is recognized as an important innate immune effector mechanism against intracellular pathogens. The induction of pyroptosis is closely associated with the activation of the NOD-like receptor 3 (NLRP3) inflammasome which has been linked to key cardiovascular risk factors including hyperlipidemia, diabetes, hypertension, obesity, and hyperhomocysteinemia. Emerging evidence has indicated pyroptosis as an important trigger and endogenous regulator of cardiovascular inflammation. Thus, pyroptosis may play an important role in the pathogenesis of cardiovascular diseases. Design of therapeutic strategies targeting the activation of NLRP3 inflammasome and pyroptosis holds promise for the treatment of cardiovascular diseases.
Abstract-We previously reported that hyperhomocysteinemia (HHcy), an independent risk factor of coronary artery disease (CAD), is associated with increased atherosclerosis and decreased plasma high-density lipoprotein cholesterol (HDL-C) in cystathionine -synthase-/apolipoprotein E-deficient (CBS Ϫ/Ϫ /apoE Ϫ/Ϫ ) mice. We observed that plasma homocysteine (Hcy) concentrations are negatively correlated with HDL-C and apolipoprotein A1 (apoA-I) in patients with CAD. We found the loss of large HDL particles, increased HDL-free cholesterol, and decreased HDL protein in CBS Ϫ/Ϫ /apoE Ϫ/Ϫ mice, and attenuated cholesterol efflux from cholesterol-loaded macrophages to plasma in CBS Ϫ/Ϫ / apoE Ϫ/Ϫ mice. ApoA-I protein was reduced in the plasma and liver, but hepatic apoA-I mRNA was unchanged in CBS Ϫ/Ϫ /apoE Ϫ/Ϫ mice. Moreover, Hcy (0.5 to 2 mmol/L) reduced the levels of apoA-I protein but not mRNA and inhibited apoA-1 protein synthesis in mouse primary hepatocytes. Further, plasma lecithin:cholesterol acyltransferase (LCAT) substrate reactivity was decreased, LCAT specific activity increased, and plasma LCAT protein levels unchanged in apoE
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.