Throat cancer treatment involves surgical removal of the tumor, leaving patients with facial disfigurement as well as temporary or permanent loss of voice. Surface electromyography (sEMG) generated from the jaw contains lots of voice information. However, it is difficult to record because of not only the weakness of the signals but also the steep skin curvature. This paper demonstrates the design of an imperceptible, flexible epidermal sEMG tattoo-like patch with the thickness of less than 10 μm and peeling strength of larger than 1 N cm −1 that exhibits large adhesiveness to complex biological surfaces and is thus capable of sEMG recording for silent speech recognition. When a tester speaks silently, the patch shows excellent performance in recording the sEMG signals from three muscle channels and recognizing those frequently used instructions with high accuracy by using the wavelet decomposition and pattern recognization. The average accuracy of action instructions can reach up to 89.04%, and the average accuracy of emotion instructions is as high as 92.33%. To demonstrate the functionality of tattoo-like patches as a new human-machine interface (HMI) for patients with loss of voice, the intelligent silent speech recognition, voice synthesis, and virtual interaction have been implemented, which are of great importance in helping these patients communicate with people and make life more enjoyable.
Tractography based on Diffusion tensor imaging (DTI) data has been used as a tool by a large number of recent studies to investigate structural connectome. Despite its great success in offering unique 3D neuroanatomy information, DTI is an indirect observation with limited resolution and accuracy and its reliability is still unclear. Thus, it is essential to answer this fundamental question: how reliable is DTI tractography in constructing large-scale connectome? To answer this question, we employed neuron tracing data of 1772 experiments in the mouse brain released by the Allen Mouse Brain Connectivity Atlas (AMCA) as the ground-truth to assess the performance of DTI tractography in inferring white matter fiber pathways and inter-regional connections. For the first time in the neuroimaging field, the performance of whole brain DTI tractography in constructing large-scale connectome has been evaluated by comparison with tracing data. Our results suggested that only with the optimized tractography parameters and the appropriate scale of brain parcellation scheme, DTI can produce relatively reliable fiber pathways and large-scale connectome. Meanwhile, a considerable amount of errors were also identified in optimized DTI tractography results, which we believe could be potentially alleviated by effort in developing better DTI tractography approaches. In this scenario, our framework could serve as a reliable and quantitative test bed to identify errors in tractography results which will facilitate the development of such novel tractography algorithms and the selection of optimal parameters.
The internal availability of silent speech serves as a translator for people with aphasia and keeps human–machine/human interactions working under various disturbances. This paper develops a silent speech strategy to achieve all-weather, natural interactions. The strategy requires few usage specialized skills like sign language but accurately transfers high-capacity information in complicated and changeable daily environments. In the strategy, the tattoo-like electronics imperceptibly attached on facial skin record high-quality bio-data of various silent speech, and the machine-learning algorithm deployed on the cloud recognizes accurately the silent speech and reduces the weight of the wireless acquisition module. A series of experiments show that the silent speech recognition system (SSRS) can enduringly comply with large deformation (~45%) of faces by virtue of the electricity-preferred tattoo-like electrodes and recognize up to 110 words covering daily vocabularies with a high average accuracy of 92.64% simply by use of small-sample machine learning. We successfully apply the SSRS to 1-day routine life, including daily greeting, running, dining, manipulating industrial robots in deafening noise, and expressing in darkness, which shows great promotion in real-world applications.
Mapping and decoding brain activity patterns underlying learning and memory represents both great interest and immense challenge. At present, very little is known regarding many of the very basic questions regarding the neural codes of memory: are fear memories retrieved during the freezing state or non-freezing state of the animals? How do individual memory traces give arise to a holistic, real-time associative memory engram? How are memory codes regulated by synaptic plasticity? Here, by applying high-density electrode arrays and dimensionality-reduction decoding algorithms, we investigate hippocampal CA1 activity patterns of trace fear conditioning memory code in inducible NMDA receptor knockout mice and their control littermates. Our analyses showed that the conditioned tone (CS) and unconditioned foot-shock (US) can evoke hippocampal ensemble responses in control and mutant mice. Yet, temporal formats and contents of CA1 fear memory engrams differ significantly between the genotypes. The mutant mice with disabled NMDA receptor plasticity failed to generate CS-to-US or US-to-CS associative memory traces. Moreover, the mutant CA1 region lacked memory traces for “what at when” information that predicts the timing relationship between the conditioned tone and the foot shock. The degraded associative fear memory engram is further manifested in its lack of intertwined and alternating temporal association between CS and US memory traces that are characteristic to the holistic memory recall in the wild-type animals. Therefore, our study has decoded real-time memory contents, timing relationship between CS and US, and temporal organizing patterns of fear memory engrams and demonstrated how hippocampal memory codes are regulated by NMDA receptor synaptic plasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.