In order to make the classification and regression of single-stage detectors more accurate, an object detection algorithm named Global Context You-Only-Look-Once v3 (GC-YOLOv3) is proposed based on the You-Only-Look-Once (YOLO) in this paper. Firstly, a better cascading model with learnable semantic fusion between a feature extraction network and a feature pyramid network is designed to improve detection accuracy using a global context block. Secondly, the information to be retained is screened by combining three different scaling feature maps together. Finally, a global self-attention mechanism is used to highlight the useful information of feature maps while suppressing irrelevant information. Experiments show that our GC-YOLOv3 reaches a maximum of 55.5 object detection mean Average Precision (mAP)@0.5 on Common Objects in Context (COCO) 2017 test-dev and that the mAP is 5.1% higher than that of the YOLOv3 algorithm on Pascal Visual Object Classes (PASCAL VOC) 2007 test set. Therefore, experiments indicate that the proposed GC-YOLOv3 model exhibits optimal performance on the PASCAL VOC and COCO datasets.
Due to the outbreak of lung infections caused by the coronavirus disease (COVID-19), humans have to face an unprecedented and devastating global health crisis. Since chest computed tomography (CT) images of COVID-19 patients contain abundant pathological features closely related to this disease, rapid detection and diagnosis based on CT images is of great significance for the treatment of patients and blocking the spread of the disease. In particular, the segmentation of the COVID-19 CT lung-infected area can quantify and evaluate the severity of the disease. However, due to the blurred boundaries and low contrast between the infected and the non-infected areas in COVID-19 CT images, the manual segmentation of the COVID-19 lesion is laborious and places high demands on the operator. Quick and accurate segmentation of COVID-19 lesions from CT images based on deep learning has drawn increasing attention. To effectively improve the segmentation effect of COVID-19 lung infection, a modified UNet network that combines the squeeze-and-attention (SA) and dense atrous spatial pyramid pooling (Dense ASPP) modules) (SD-UNet) is proposed, fusing global context and multi-scale information. Specifically, the SA module is introduced to strengthen the attention of pixel grouping and fully exploit the global context information, allowing the network to better mine the differences and connections between pixels. The Dense ASPP module is utilized to capture multi-scale information of COVID-19 lesions. Moreover, to eliminate the interference of background noise outside the lungs and highlight the texture features of the lung lesion area, we extract in advance the lung area from the CT images in the pre-processing stage. Finally, we evaluate our method using the binary-class and multi-class COVID-19 lung infection segmentation datasets. The experimental results show that the metrics of Sensitivity, Dice Similarity Coefficient, Accuracy, Specificity, and Jaccard Similarity are 0.8988 (0.6169), 0.8696 (0.5936), 0.9906 (0.9821), 0.9932 (0.9907), and 0.7702 (0.4788), respectively, for the binary-class (multi-class) segmentation task in the proposed SD-UNet. The result of the COVID-19 lung infection area segmented by SD-UNet is closer to the ground truth compared to several existing models such as CE-Net, DeepLab v3+, UNet++, and other models, which further proves that a more accurate segmentation effect can be achieved by our method. It has the potential to assist doctors in making more accurate and rapid diagnosis and quantitative assessment of COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.