Background: Paeoniae Radix Alba, the root of the plant Paeonia lactiflora Pall, is a common blood-enriching drug in traditional Chinese medicine. Its effectiveness in the clinical treatment of anaemia is remarkable, but its potential pharmacologic mechanism has not been clarified. Methods: In this study, the potential pharmacologic mechanism of Paeoniae Radix Alba in the treatment of iron-deficiency anaemia was preliminarily elucidated through systematic and comprehensive network pharmacology. Results: Specifically, we obtained 15 candidate active ingredients from among 146 chemical components in Paeoniae Radix Alba. The ingredients were predicted to target 77 genes associated with iron-deficiency anaemia. In-depth analyses of these targets revealed that they were mostly associated with energy metabolism, cell proliferation, and stress responses, suggesting that Paeoniae Radix Alba helps alleviate irondeficiency anaemia by affecting these processes. In addition, we conducted a core target analysis and a cluster analysis of protein-protein interaction (PPI) networks. The results showed that four pathways, the p53 signalling pathway, the IL-17 signalling pathway, the TNF signalling pathway and the AGE-RAGE signalling pathway in diabetic complications, may be major pathways associated with the ameliorative effects of Paeoniae Radix Alba on iron-deficiency anaemia. Moreover, molecular docking verified the credibility of the network for molecular target prediction. Conclusions: Overall, this study predicted the functional ingredients in Paeoniae Radix Alba and their targets and uncovered the mechanism of action of this drug, providing new insights for advanced research on Paeoniae Radix Alba and other traditional Chinese medicines.
Background and Aim: Platycodon grandiflorum (PG) has been widely used for treating chronic bronchitis (CB). However, the material basis and underlying mechanism of action of PG against CB have not yet been elucidated. Methods: To analyze the ingredients in PG, ultraperformance liquid chromatographyquadrupole-time-of-flight tandem mass (UPLC-Q-TOF-MS/MS) technology was performed. Subsequently, using data mining and network pharmacology methodology, combined with Discovery Studio 2016 (DS), Cytoscape v3.7.1, and other software, active ingredients, drug-disease targets, and key pathways of PG in the treatment of CB were evaluated. Finally, the reliability of the core targets was evaluated using molecular docking technology and in vitro studies. Results: A total of 36 compounds were identified in PG. According to the basic properties of the compounds, 10 major active ingredients, including platycodin D, were obtained. Based on the data mining approach, the Traditional Chinese Medicine Systems Pharmacology Database, and the Analysis Platform (TCMSP), GeneCards, and other databases were used to obtain targets related to the active ingredients of PG and CB. Network analysis was performed on 144 overlapping gene symbols, and twenty core targets, including interleukin-6 (IL-6) and tumor necrosis factor (TNF), which indicated that the potential signaling pathway that was most relevant to the treatment of CB was the IL-17 signaling pathway.
Objective: The technology, network pharmacology and molecular docking technology of the ultra performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) were used to explore the potential molecular mechanism of Platycodon grandiflorum (PG) in the treatment of lung cancer (LC).Methods: UPLC-Q-TOF-MS/MS technology was used to analyze the ingredients of PG and the potential LC targets were obtained from the Traditional Chinese Medicine Systems Pharmacology database, and the Analysis Platform (TCMSP), GeneCards and other databases. The interaction network of the drug-disease targets was constructed with the additional use of STRING 11.0. The pathway enrichment analysis was carried out using Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) in Metascape, and then the “Drug-Ingredients-Targets-Pathways-Disease” (D-I-T-P-D) network was constructed using Cytoscape v3.7.1. Finally, the Discovery Studio 2016 (DS) software was used to evaluate the molecular docking.Results: Forty-seven compounds in PG, including triterpenoid saponins, steroidal saponins and flavonoids, were identified and nine main bioactive components including platycodin D were screened. According to the method of data mining, 545 potential drug targets and 2,664 disease-related targets were collected. The results of topological analysis revealed 20 core targets including caspase 3 (CASP3) and prostaglandin-endoperoxide synthase 2 (PTGS2) suggesting that the potential signaling pathway potentially involved in the treatment of LC included MAPK signaling pathway and P13K-AKT signaling pathway. The results of molecular docking proved that the bound of the ingredients with potential key targets was excellent.Conclusion: The results in this study provided a novel insight in the exploration of the mechanism of action of PG against LC.
Aurantii fructus, the dried immature fruit of Citrus aurantium L., Rutaceae, or its cultivated variants, has been used in traditional Chinese medicine for thousands of years. Unprocessed Aurantii fructus can trigger various side effects, collectively known as "zao". Dry mouth is the obvious symptom. Fengyan pieces, a processed product of Aurantii fructus, can relieve dry mouth but does not affect its efficacy. In order to analyze this mechanism, the effect on the gastrointestinal tract was characterized by measuring the levels of gastrin, a vasoactive intestinal peptide, in rat serum. Chemical analysis of Aurantii fructus pieces (raw product) and Fengyan pieces was performed by ultra-performance liquid chromatography-mass spectrometry (quadrupole timeof-flight) in combination with chemometrics methods to dereplicate the characteristic components. Aquaporin 5 expression in human submandibular gland cells was measured to validate the effect of the identified components. The results showed that serum gastrin content was different between the different dose groups, and Fengyan pieces showed lower levels of serum vasoactive intestinal peptide than Aurantii fructus pieces. 3,5,6,7,8,3′,4′-Heptamethoxyflavone was the distinctive component, and it has most effectively downregulated aquaporin 5 expression in the submandibular glands of mice. It also reduced aquaporin 5 mRNA and protein expression in human submandibular gland cells. Collectively, these results suggest that processing did not affect the efficacy of Fengyan pieces, but did relieve dry mouth and that 3,5,6,7,8,3′,4′-heptamethoxyflavone was the Aurantii fructus component responsible for dry mouth. This study provides a new scientific basis for reduction of the dry mouth effects of Aurantii fructus from processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.