Previous studies showed that many wood-rotting fungi were attractive to termites; however, little attention has been paid to the relationship between termites and soil fungus. In the present study, different designs of two-choice tests were conducted to investigate the behaviors of two subterranean termites, Coptotermes formosanus Shiraki (wood-feeding lower termites) and Odontotermes formosanus (Shiraki) (fungus-growing higher termites), in response to soil (or sand) treated with the commercial conidial formulations of Trichoderma harzianum Rifai (BioWorks) and Trichoderma viride Pers. ex Fries (Shuiguxin). The short-term (1 d) choice tests showed no significant difference in termite aggregation (C. formosanus and O. formosanus) between treated and untreated soil, regardless of Trichoderma species and concentrations. However, in the long-term choice tests, C. formosanus consumed significantly more wood in the chambers containing soil treated with the conidial formulation of T. viride (1 × 108 conidia/g) than that containing untreated soil. The tunneling choice tests showed that sand treated with T. viride (1 × 106 or 1 × 108 conidia/g) or T. harzianum (1 × 106 conidia/g) significantly increased the tunneling activities of C. formosanus. However, sand treated with T. viride (1 × 106 or 1 × 108 conidia/g) had a repellent effect on O. formosanus. Our study showed that the two subterranean termites behaved differently when responding to the conidial formulations of Trichoderma.
Although subterranean termites live within soil, little attention has been paid on the potential interaction among subterranean termites and soil microbes. Herein, we conducted different choice tests to investigate aggregation and tunneling behaviors of Coptotermes formosanus Shiraki responding to soil/sand treated with conidia of seven soil fungi, Trichoderma longibrachiatum Rifai, Trichoderma koningii Oud., Trichoderma hamatum (Bon.) Bain., Trichoderma atroviride Karsten, Trichoderma spirale Indira and Kamala, Trichoderma harzianum Rifai, and Trichoderma viride Pers. ex Fries. In aggregation-choice test, soil treated with nearly all Trichoderma species tested (except T. koningii) significantly increased termite aggregation compared with untreated soil. In tunneling-choice tests, termites produced significantly larger tunnels in sand treated with T. longibrachiatum or T. koningii than that in untreated sand. We hypothesized that Trichoderma species could benefit termites by protecting them from infection of the entomopathogenic fungus Metarhizium anisopliae (Metschn) Sorokin, and three Trichoderma species that attracted termites (T. longibrachiatum, T. atroviride, and T. harzianum) were tested. The antagonism tests showed that the three Trichoderma species suppressed growth of M. anisopliae. Also, the median lethal time (LT 50) of termites exposed to both Trichoderma species and M. anisopliae was significantly longer than termites exposed to M. anisopliae alone. Interestingly, though significantly fewer termites aggregated in soil treated with M. anisopliae conidia compared with untreated soil, M. anisopliae conidia mixed with T. longibrachiatum or T. harzianum were no longer repellent to termites. Our results showed that the fungi in the genus Trichoderma (1) exerted generally attractive effects on termites, (2) protected termites from the infection of entomopathogenic fungus, and (3) altered pathogen-avoiding behaviors of termites. Future studies will be required to understand the mechanisms underlying these newly discovered effects.
Subterranean termites often transport soil into bait stations. In this study, we hypothesize that adding soil or clay material in the bait may affect preference and performance of termites. Choice and no-choice tests were conducted in the laboratory to investigate the aggregation and feeding preference, survivorship, wood consumption, and body water percentage of termites in response to food containers (here we simulated the bait station by placing a wood block into a bigger plastic box with termite-entering holes on the wall) with the void space filled with soil (sandy clay loam), clay material (sodium bentonite), or remained unfilled. Choice tests showed that under low-moisture conditions, food containers filled with clay attracted significantly more termites (Coptotermes formosanus Shiraki (Blattodea: Rhinotermitidae) and Reticulitermes guangzhouensis Ping (Blattodea: Rhinotermitidae)) compared to food containers filled with soil, or unfilled. Under medium-moisture conditions, however, the percentages of termites that aggregated in the food containers filled with soil or clay were similar, and both were significant higher than the percentages in unfilled ones. In no-choice tests, the highest survivorship and wood consumption in C. formosanus were recorded under medium-moisture conditions and when food containers were filled with clay, whereas the lowest survivorship and wood consumption were recorded under low-moisture conditions and when food containers were filled with soil. Interestingly, presence of clay increased the body water percentage of termites. Our study enhances the understanding of the foraging ecology of subterranean termites, and may contribute to the improvement of termite-baiting technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.