Particulate pollutants mixed in hydraulic oil will lead to the failure of the marine hydraulic system. Nowadays, the current identification methods of particulate pollutants in oil make it challenging to obtain the specific parameters of pollutants. For this reason, this paper proposes a recognition method of marine-hydraulic-oil-particle pollutants based on OpenCV. The image of particles in the marine hydraulic oil was preprocessed by OpenCV software and using the Canny operator edge detection algorithm to extract the contour of particle pollutants to obtain their area and perimeter. The recognition accuracy reached 95%. Using the Douglas–Peucker algorithm for fit polygons, then image moments to obtain the angle-distance waveform of particulate pollutants, the shape of marine-hydraulic-oil particulate pollutants was successfully identified. The designed method has the advantages of fast calculation efficiency, high accuracy, and real-time detection of various parameters of particulate pollutants in marine hydraulic oil. It has great significance for the fault diagnosis of hydraulic systems and prolonging the working life of hydraulic equipment. This research provides a new idea for the condition monitoring and fault diagnosis of ships and offshore engineering equipment.
Ships are equipped with power plants and operational assistance devices, both of which need oil for lubrication or energy transfer. Oil carries a large number of metal particles. By identifying the materials and sizes of metal particles in oil, the position and type of wear can be fully understood. However, existing online oil-detection methods make it difficult to identify the materials and the sizes of metal particles simultaneously and continuously. In this paper, we proposed a method for identifying the materials and the sizes of particles based on neural network. Firstly, a tree network model was designed. Then, each sub-network was trained in stages. Finally, the identification performance of several key groups of different frequencies and frequency combinations was tested. The experimental results showed that the method was effective. The accuracies of material and size identification reached 98% and 95% in the pre-training stage, and both had strong robustness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.