Introduction of the Cl(-) anion in the borate systems generates a new perovskite-like phase, K(3)B(6)O(10)Cl, which exhibits a large second harmonic response, about four times that of KH(2)PO(4) (KDP), and is transparent from the deep UV (180 nm) to middle-IR region. K(3)B(6)O(10)Cl crystallizes in the noncentrosymmetric and rhombohedral space group R3m. The structure consists of the A-site hexaborate [B(6)O(10)] groups and the BX(3) Cl-centered octahedral [ClK(6)] groups linked together through vertices to form the perovskite framework represented by ABX(3).
Nonlinear optical (NLO) materials are the vital components of future photoelectric technologies as they can broaden the tunable wavelength range supplied by common laser sources. However, the necessary prerequisites for a practical NLO material are rather strict. Accordingly, considerable efforts have been focused on finding potential NLO materials. Here we report two asymmetric beryllium-free borates Pna21- and P2m-Ba3Mg3(BO3)3F3 featuring NLO-favorable 2∞[Mg3O2F3(BO3)2] layered structures. The reversible phase transition among two polymorphs was demonstrated by multiple experimental tests. The optical measurements reveal that Pna21-Ba3Mg3(BO3)3F3 possesses the optical properties required for ultraviolet NLO applications. Remarkably, Pna21-Ba3Mg3(BO3)3F3 has a large laser damage threshold, a deep-ultraviolet cutoff edge, a favorable anisotropic thermal expansion as well as the capacity of insolubility in water. These optical properties can be comparable or superior to that of commercial NLO material β-BaB2O4, which make Pna21-Ba3Mg3(BO3)3F3 a promising ultraviolet NLO material.
Angle phase-matching in nonlinear optical (NLO) materials is critical for technological applications. The purpose of this manuscript is to describe the concept of phase-matching for the materials synthesis NLO community. Refractive index and birefringence are defined with respect to uniaxial and biaxial crystal systems. The phase-matching angle and wavelength range, Type I and Type II, are explained using real NLO materials, K 3 B 6 O 10 Cl (KBOC) and Ba 3 (ZnB 5 O 10 )PO 4 (BZBP) In addition, we describe how refractive index measurements are performed on single crystals and how the resulting birefringence impacts the phase-matching. Our goal is to provide a description of phase-matching that is relevant for the materials synthesis NLO community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.