The improvement of the overall performance of hydraulic pumps is the basis of intelligent hydraulics. Taking the straight line conjugate internal meshing gear pump as the research object, the theoretical flow rate and the geometric flow pulsation rate equations are established in this study through the volume change method. The change laws of the gear pair’s geometric parameters on the theoretical flow rate and the geometric flow pulsation rate are studied. The simulation model of the internal flow channel is established, and the influence factors and the influence degree of the flow pulsation and average flow rate are analyzed. The high-pressure positive displacement pump test system is also designed and built. The performance evaluations are conducted, and the experimental results are analyzed. The results show that the periodic change of the meshing point position is the root cause of the geometric flow pulsation. The theoretical flow rate and the geometric flow pulsation rate are 103.71 L/min and 1.76%, respectively. To increase the theoretical flow rate whilst decreasing the geometric flow pulsation rate, the tip circle radius of the external gear should be increased as much as possible within the allowable range of the design calculation. Amongst the three influencing factors that produce flow pulsation, the oil compressibility has no effect on the flow pulsation. The uneven internal leakage is the main factor, and the geometric flow pulsation only accounts for a small proportion. The internal leakage reduces the simulated flow rate by 3.59 L/min. The difference between the experimental and simulated flow rates is less than 2%. Within the allowable speed range, the rotation speed of the external gear should be increased as much as possible to increase the average flow rate and the volumetric efficiency.
As a precision mechanical component to reduce friction between components, the rolling bearing is widely used in many fields because of its slight friction loss, strong bearing capacity, high precision, low power consumption, and high mechanical efficiency. This paper reviews several excellent kinds of study and their relevance to the fault detection of rolling bearings. We summarize the fault location, sensor types, bearing fault types, and fault signal analysis of rolling bearings. The fault signal types are divided into one-dimensional and two-dimensional images, which account for 40.14% and 31.69%, respectively, and their classification is clarified and discussed. We counted the proportions of various methods in the references cited in this paper. Among them, the method of one-dimensional signal detection with external sensors accounted for 3.52%, the method of one-dimensional signal detection with internal sensors accounted for 36.62%, and the method of two-dimensional signal detection with external sensors accounted for 19.72%. The method of two-dimensional signal detection with internal sensors accounted for 11.97%. Among these methods, the highest detection rate is 100%, and the lowest detection rate is more than 70%. The similarities between the different methods are compared. The research results summarized in this paper show that with the progress of the times, a variety of new and better research methods have emerged, which have sped up the detection and diagnosis of rolling bearing faults. For example, the technology using artificial intelligence is still developing rapidly, such as artificial neural networks, convolutional neural networks, and machine learning. Although there are still defects, such methods can quickly discover a fault and its cause, enrich the database, and accumulate experience. More and more advanced techniques are applied in this field, and the detection method has better robustness and superiority.
As a medium and low pressure gear machine without automatic compensation structure for axial and radial clearances, the friction pairs in the straight conjugate internal gear pumps (SCIGPs) depend on the fixed small clearances to seal, lubricate and transfer the force. The oil film design of the friction pairs has become an important part of gear pump design. However, there has never been a publicly published research on the oil film design of the SCIGP in past literature. This paper applies orthogonal test to the oil film design of the SCIGP for the first time to determine the best working clearances. With this goal, the paper first provides the mathematical models for analyzing the internal leakage flow and the viscous friction loss, which elucidate the relationships between the leakage and the friction loss with working conditions. After that, the orthogonal test scheme for numerical simulation was designed on the basis of determining the range of oil film thickness. The paper also propounds the viewpoints of using the range-method to estimate the primary and secondary relationship of factors and determining the optimal combination according to the test target. Based on this concept, the main factors affecting the target are procured and the optimal working clearances of the friction pairs are determined. For the purpose of verifying the model, the redesigned prototype was tested and compared with the simulation results. The results validate the applicability of the simulation model and the correctness of the simulation method. Finally, the paper summarizes the ways to improve the total efficiency and the working conditions at the highest efficiency.
Background: Laparoscopic anterior sacral ligament suspension combined with dome suspension (L-ASLS + DS) and transperineal whole pelvic floor reconstruction (T-WPFR) are 2 methods for treating bladder prolapse after hysterectomy. In clinical practice, we found that L-ASLS + DS has better safety and effectiveness than T-WPFR, but there is no relevant study comparing the safety and effectiveness of these two methods.We sought to compare the efficacy and safety of L-ASLS + DS and T-WPFR in treating hysterectomyinduced bladder prolapse overa 1-year follow-up period. Methods: A total 146 patients with bladder prolapse after hysterectomy who attended Shanxi Provincial People's Hospital from January 2011 to January 2022 were included in this study. Patients were divided into study group and control group by voluntary means or economic reasons. In total, 75 patients received L-ASLS + DS surgery and 71 patients received T-WPFR surgery to treat hysterectomy-induced bladder prolapse. The L-ASLS + DS-treated patients comprised the study group, while the T-WPFR-treated patients comprised the control group. The perioperative indicators, curative effect, and postoperative complication rates in the follow-up period were compared between the 2 groups. Results: L-ASLS + DS outperformed T-WPFR in terms of the perioperative indicators, and the incidence of postoperative complications in the L-ASLS + DS group was significantly lower than that in the T-WPFR group.Conclusions: L-ASLS + DS can be used to effectively treat bladder prolapse after hysterectomy. L-ASLS + DS reduced the incidence of postoperative complications, improved the cure rate, and was shown to be safe. Thus, it is worthy of comprehensive clinical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.