Dual-network conductive hydrogels have drawn wide attention in epidemic electronics such as epidemic sensors and electrodes because of their inherent low Young's modulus, high skincompliance, and tunable mechanical strength. However, it is still full of challenges to gain a dual-network hydrogel with high stretchability, low hysteresis, and skin-adhesive performance simultaneously. Herein, to address this issue, a novel dual-network hydrogel (denoted as PAa hydrogel) with polyacrylamide as the first network and topologically entangled polydopamine as the secondary network was prepared through a facile gel-phase in situ self-polymerization and soaking treatment. Benefiting from the topological enhancement as well as the synergetic effects of hydrogen bonds and metal coordination bonds, low modulus (∼10 kPa), excellent stretchability (1090.8%), high compression (90%), negligible hysteresis (η = 0.019, energy loss coefficient), rapid recovery in seconds, and selfadhesion are obtained in the PAa hydrogels. To demonstrate their practical use, a states-independent and skin-adhesive epidemic sensor was successfully attached on human skin for motion detection. What is more, by using the hydrogel as an epidemic electrode, electromyogram signals were accurately detected and wirelessly transmitted to a smart phone. This work offers a new insight to understand the strengthening mechanism of dual network hydrogels and a design strategy for both epidemic sensors and electrodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.