Due to its constitutive activity and ubiquitous distribution, CK2 is the most pleiotropic kinase among the individual members of the protein kinase superfamily. Identification of CK2 substrates is vital to decipher its role in biological processes. However, only a limited number of CK2 substrates were identified so far. In this study, we developed an integrated phosphoproteomics workflow to identify the CK2 substrates in large scale. First, in vitro kinase reactions with immobilized proteomes were combined with quantitative phosphoproteomics to identify in vitro CK2 phosphorylation sites, which leaded to identification of 988 sites from 581 protein substrates. To reduce false positives, we proposed an approach by comparing these in vitro sites with the public databases that collect in vivo phosphorylation sites. After the removal of the sites that were excluded in the databases, 605 high confident CK2 sites corresponding to 356 proteins were retained. The CK2 substrates identified in this study were based on the discovery mode, in which an unbiased overview of CK2 substrates was provided. Our result revealed that CK2 substrates were significantly enriched in the spliceosomal proteins, indicating CK2 might regulate the functions of spliceosome.
Engineered nanomaterials (ENMs) including multiwall carbon nanotubes (MWCNTs) and rare earth oxide (REO) nanoparticles, which are capable of activating the NLRP3 inflammasome and inducing IL-1β production, have the potential to cause chronic lung toxicity. Although it is known that lysosome damage is an upstream trigger in initiating this pro-inflammatory response, the same organelle is also an important homeostatic regulator of activated NLRP3 inflammasome complexes, which are engulfed by autophagosomes and then destroyed in lysosomes after fusion. Although a number of ENMs have been shown to induce autophagy, no definitive research has been done on the homeostatic regulation of the NLRP3 inflammasome during autophagic flux. We used a myeloid cell line (THP-1) and bone marrow derived macrophages (BMDM) to compare the role of autophagy in regulating inflammasome activation and IL-1β production by MWCNTs and REO nanoparticles. THP-1 cells express a constitutively active autophagy pathway and are also known to mimic NLRP3 activation in pulmonary macrophages. We demonstrate that, while activated NLRP3 complexes could be effectively removed by autophagosome fusion in cells exposed to MWCNTs, REO nanoparticles interfered in autophagosome fusion with lysosomes. This leads to the accumulation of the REO-activated inflammasomes, resulting in robust and sustained IL-1β production. The mechanism of REO nanoparticle interference in autophagic flux was clarified by showing that they disrupt lysosomal phosphoprotein function and interfere in the acidification that is necessary for lysosome fusion with autophagosomes. Binding of LaPO4 to the REO nanoparticle surfaces leads to urchin-shaped nanoparticles collecting in the lysosomes. All considered, these data demonstrate that in contradistinction to autophagy induction by some ENMs, specific materials such as REOs interfere in autophagic flux, thereby disrupting homeostatic regulation of activated NLRP3 complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.