Metasurface holography has the advantage of realizing complex wavefront modulation by thin layers together with the progressive technique of computer-generated holographic imaging. Despite the well-known light parameters, like amplitude, phase, polarization and frequency, the orbital angular momentum (OAM) of a beam can be regarded as another degree of freedom. Here, we propose and demonstrate orbital angular momentum multiplexing at different polarization channels using a birefringent metasurface for holographic encryption. The OAM selective holographic information can only be reconstructed with the exact topological charge and a specific polarization state. By using an incident beam with different topological charges as erasers, we mimic a super-resolution case for the reconstructed image, in analogy to the well-known STED technique in microscopy. The combination of multiple polarization channels together with the orbital angular momentum selectivity provides a higher security level for holographic encryption. Such a technique can be applied for beam shaping, optical camouflage, data storage, and dynamic displays.
Fresnel incoherent correlation holography (FINCH) was a milestone in incoherent holography. In this roadmap, two pathways, namely the development of FINCH and applications of FINCH explored by many prominent research groups, are discussed. The current state-of-the-art FINCH technology, challenges, and future perspectives of FINCH technology as recognized by a diverse group of researchers contributing to different facets of research in FINCH have been presented.
Metasurfaces are planar devices containing delicately designed nanoantenna or resonator arrays that allow for beam shaping, super resolution imaging, and holography. Hybrid metasurface – by integrating with tunable materials such as two-dimensional materials and phase change materials (PCMs) – provides a potential platform for active modulation of wavefronts. Specifically, PCMs can flexibly switch between crystalline and amorphous states with nonvolatile property under external stimuli and provide a large refractive permittivity contrast. Using metasurfaces based on PCM to manipulate wavefronts may provide new opportunities for switchable functionalities. Here, we propose two types of metasurface devices based on whole PCM films to realize switchable holography and simultaneous phase and interference encryption. This feature can be used to encrypt information in a switched state and store camouflage information in the other state by simply applying external thermal stimuli to the entire metasurface. This method can be applied in areas such as beam shaping, optical encryption, and anti-counterfeiting.
Metasurfaces with compact footprint and large information capacity bring unprecedented possibilities for the miniaturized optoelectronic systems. With the further exploration of intriguing wavefront tailoring possibilities, multiple dimensional multiplexing and dynamic modulation techniques combined with metasurface designs gradually become crucial research trends. Here, we utilize resonance effects and geometric phase of metasurfaces to simultaneously shape the amplitude, phase and polarization of light, and rebuild a vectorial holography with customized patterns and polarizations. By selecting the desired polarization combination continuously, dynamic display of vectorial meta-holography with 4-fold degeneracy is demonstrated. Such a method can precisely modulate the spatial phase and polarization distributions simultaneously at each frame, while the dynamic tunability is easy to implement based on polarization rotation. Such versatile and compact metasurfaces may provide promising solutions to dynamic and near-eye display, compact LiDAR, optical encryption, and date storage.
Spin light manipulation based on chiral metasurfaces is a striking hotspot that has intrigued huge attention. Circular dichroism, a unique phenomenon of chiral atoms/molecules, has been regarded as another auxiliary dimension for guiding electromagnetic waves, which has been explored in the field of artificial material sciences yet a challenging issue. Here, a generic strategy based on dynamic chiral meta-atom for revealing strong circular dichroism as well as applicable electromagnetic functionality is proposed in microwave regime. We demonstrate a dynamic metasurface that enables the fully independent holograms reconstruction for one circular polarization or the other at the active operating state. On the other hand, the electromagnetic scattering is realized for lowering observable backward reflection at the passive state. Numerical simulation and experimental verification are conducted to manifest the feasibility. It is expected that the proposed strategy can be applied to broaden the horizon for dynamic chiral meta-devices and may find applications in information encryption, anti-counterfeiting, and other dynamic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.