An h-adaptive Runge-Kutta discontinuous Galerkin (RKDG) method with a positivity-preserving technique to simulate classical two-dimensional detonation waves is developed. The KXRCF troubled-cell indicator is used to detect the troubled cells with possible discontinuities or high gradients. At each time-level, an adaptive mesh is generated by refining troubled cells and coarsening others. In order to avoid the situations where detonation front moves too fast and there are not enough cells to describe detonation front before it leaves, a recursive multi-level mesh refinement technique is designed. The numerical results show that for smooth solutions, this h-adaptive method does not degrade the optimal convergence order of the nonadaptive method and outperforms it in terms of computational storage for shocked flows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.