Atmospheric nitrogen (N) deposition has rapidly increased during the last few decades; however, the seasonal responses of leaf N:P stoichiometry to N deposition remain unclear. In 2008, a simulated N deposition experiment (0, 30, 60, and 120 kg·N·ha−1·yr−1) was conducted in an old-growth temperate forest in Northeast China. In 2014, the leaves of 17 woody species and soil were sampled in spring, summer, and autumn in each treatment, and N:P stoichiometry was assessed. Community N and P in summer were significantly lower than that in spring and autumn. Unlike broadleaved species, conifers showed no significant variation among the three seasons. N addition significantly enhanced community N and soil available P but decreased soil total P in summer and autumn, and decreased community P, as well as the P concentration of three life forms (conifer, tree, and shrub), in autumn. Our results emphasize the importance of multiple sampling across seasons in temperate forests. Arguing against the traditional consensus, the productivity of the old-growth temperate forests is limited by both N and P.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.