BODIPY, abbreviation of boron-dipyrromethene, is one class of robust organic molecules that has been used widely in bioimaging, sensing, and logic gate design. Recently, BODIPY dyes have been explored for dye-sensitized solar cells (DSCs). Studies demonstrate their potential as light absorbers for the conversion of solar energy to electricity. However, their photovoltaic performance is inferior to many other dyes, including porphyrin dyes. In this review, several synthetic strategies of BODIPY dyes for DSCs and their further functionalization are described. The photophysical properties of dye molecules and their photovoltaic performances in DSCs are summarized. We aim to provide readers a clear picture of the field and expect to shed light on the next generation of BODIPY dyes for their applications in solar energy conversion.
Replacement of the ZrO2 insulator layer in the state-of-the-art TiO2/ZrO2/carbon structure by mesoscopic p-type NiO particles led to 39% increase of energy conversion efficiency of hole-conductor-free organometallic perovskite heterojunction solar cells with carbon counter electrodes. In these cells, the light absorber, CH3NH3PbI3, formed instantly inside the pores of the entire TiO2/NiO/carbon layer upon sequential deposition of PbI2 and CH3NH3I. Photoluminescence, impedance spectroscopy and transient photovoltage decay measurements have revealed that introduction of NiO extended the electron lifetime and augmented the hole extraction of the counter electrode. As a result, the photocurrent and open-circuit voltage both increased, resulting in a cell with impressive energy conversion efficiency of 11.4% under AM1.5G conditions.
8-Hydroxylquinoline (OQ) is demonstrated for the first time as a strong alternative anchoring group porphyrin dyes to improve the long-term stability of solar cells.
A new organic dye (BET) was synthesized and coadsorbed on TiO 2 nanoparticles to make mixed BET/ porphyrin-sensitized solar cells (DSCs). The BET is a boron dipyrromethene compound with one benzoic acid group attached to the meso position for its binding to the TiO 2 nanoparticles and two ethyl groups in the 3 and 3′ positions of pyrrolic units to broaden its absorption. Two ethyl groups are in the cis position, as revealed by its single-crystal X-ray diffraction analysis. The BET exhibits strong absorption in the green light region with an absorption maximum at 528 nm in CH 2 Cl 2 , which is complementary to the absorption spectrum of porphyrin dyes. When the BET coadsorbs on the TiO 2 nanoparticles with porphyrin dyes (TMPZn and LD12), the power conversion efficiencies increase from 1.09% to 2.90% for TMPZn-sensitized solar cells and from 6.65% to 7.60% for LD12-sensitized solar cells, respectively. The IPCE of the devices in the green light region increases dramatically due to the cosensitizing effect of BET. The fluorescence of BET in solution is partially quenched and that of porphyrin is enhanced in the presence of BET dye, indicating an intermolecular energy transfer from BET to the porphyrin dyes. The direct electron injection from BET to the TiO 2 conduction band was rather poor; only negligible photocurrent was observed. Comparative studies of absorption spectra on the TiO 2 nanoparticle films and electrochemical impedance at the dye/TiO 2 interface also indicate that the BET is an excellent coadsorber to prevent the aggregation of porphyrin dyes. An intermolecular energy transfer model is proposed to account for the observed photovoltaic enhancement of the cosensitization system.
We report on an experimental study of three organic push-pull dyes (coded as zzx-op1, zzx-op1-2, and zzx-op1-3) featuring one, two, and three fluorene units as spacers between donors and acceptors for p-type dye-sensitized solar cells (p-DSSC). The results show increasing the number of spacer units leads to obvious increases of the absorption intensity between 300 nm and 420 nm, a subtle increase in hole driving force, and almost the same hole injection rate from dyes to NiO nanoparticles. Under optimized conditions, the zzx-op1-2 dye with two fluorene spacer units outperforms other two dyes in p-DSSC. It exhibits an unprecedented photocurrent density of 7.57 mA cm(-2) under full sun illumination (simulated AM 1.5G light illumination, 100 mW cm(-2)) when the I(-)/I3(-) redox couple and commercial NiO nanoparticles were used as an electrolyte and a semiconductor, respectively. The cells exhibited excellent long-term stability. Theoretical calculations, impedance spectroscopy, and transient photovoltage decay measurements reveal that the zzx-op1-2 exhibits lower photocurrent losses, longer hole lifetime, and higher photogenerated hole density than zzx-op1 and zzx-op1-3. A dye packing model was proposed to reveal the impact of dye aggregation on the overall photovoltaic performance. Our results suggest that the structural engineering of organic dyes is important to enhance the photovoltaic performance of p-DSSC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.