Numerical simulation and experimental validation of a direct current air corona discharge under atmospheric pressure *Liu Xing-Hua(刘兴华) a) † , He Wei(何 为) a) , Yang Fan(杨 帆) a) , Wang Hong-Yu(王虹宇) b) , Liao Rui-Jin(廖瑞金) a) , and Xiao Han-Guang(肖汉光) a)
An improved self-consistent, multi-component, and one-dimensional plasma model for simulating atmospheric pressure argon glow discharge is presented. In the model, both the plasma hydrodynamics model and chemical model are considered. The numerical simulation is carried out for parallel-plate geometry with a separation of 0.06 cm. The results show that Ar * plays a major role in the discharge, which is mainly produced by ground state excitation reaction. The electron temperature reaches its maximum in the cathode sheath but maintains a low value (0.23 eV) in bulk plasma. Elastic collision is the dominant volumetric electron energy loss in atmosphere argon glow discharge, which is negligible in low pressure argon glow discharge. The metastable step-wise ionization is the main mechanism for electron production to sustain the discharge. However, the highest contribution to electron production rate is ground state ionization reaction. The bremsstrahlung power density is related to electric voltage. With the increase of the electric voltage, the bremsstrahlung power density increases, namely, the strength of ultraviolet radiation spectrum enhances in the cathode sheath.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.