Pediatric gastroparesis is a complex condition with variable symptomatology and outcome depending on multiple parameters. Understanding the clinical features and response to therapy will improve our diagnosis and treatment of this disorder.
Present study aimed to investigate the eff ect of curcumin-pretreatment on intestinal I/R injury and on intestinal mucosa barrier. Thirty Wistar rats were randomly divided into: sham, I/R, and curcumin groups (n=10). Animals in curcumin group were pretreated with curcumin by gastric gavage (200 mg/kg) for 2 days before I/R. Small intestine tissues were prepared for Haematoxylin & Eosin (H&E) staining. Serum diamine oxidase (DAO) and tumor necrosis factor (TNF)-α levels were measured. Expression of intestinal TNF-α and tight junction protein (ZO-1) proteins was detected by Western blot and/or immunohistochemistry. Serum DAO level and serum and intestinal TNF-α leves were signifi cantly increased after I/R, and the values were markedly reduced by curcumin pretreatment although still higher than that of sham group (p<0.05 or p<0.001). H&E staining showed the significant injury to intestinal mucosa following I/R, and curcumin pretreatment signifi cantly improved the histological structure of intestinal mucosa. I/R insult also induced significantly down-regulated expression of ZO-1, and the eff ect was dramatically attenuated by curcumin-pretreatment. Curcumin may protect the intestine from I/R injury through restoration of the epithelial structure, promotion of the recovery of intestinal permeability, as well as enhancement of ZO-1 protein expression, and this eff ect may be partly attributed to the TNF-α related pathway.
Toll-like receptor 4 (TLR4) has been linked to various pathophysiological conditions, such as traumatic brain injury (TBI). It is reported that posttraumatic neuroinflammation is an essential event in the progression of brain injury after TBI. Recent evidences indicate that TLR4 mediates glial phagocytic activity and inflammatory cytokines production. Thus, TLR4 may be an important therapeutic target for neuroinflammatory injury post-TBI. This study was designed to explore potential effects and underlying mechanisms of TLR4 in rats suffered from TBI. TBI model was induced using a controlled cortical impact in rats, and application of TLR4 shRNA silenced TLR4 expression in brain prior to TBI induction. Elevated TLR4 was specifically observed in the hippocampal astrocytes and neurons posttrauma. Interestingly, TLR4 shRNA decreased the concentrations of interleukin (IL)-1β, IL-6, and tissue necrosis factor-α; alleviated hippocampal neuronal damage; reduced brain edema formation; and improved neurological deficits after TBI. Meanwhile, to further explore underlying molecular mechanisms of this neuroprotective effects of TLR4 knockdown, our results showed that TLR4 knockdown significantly inhibited the upregulation of autophagy-associated proteins caused by TBI. More importantly, an autophagy inducer, rapamycin pretreated, could partially abolish neuroprotective effects of TLR4 knockdown on TBI rats. Furthermore, TLR4 silencing markedly suppressed GFAP upregulation and improved cell hypertrophy to attenuate TBI-induced astrocyte activation. Taken together, these findings suggested that TLR4 knockdown ameliorated neuroinflammatory response and brain injury after TBI through suppressing autophagy induction and astrocyte activation.
Background and Aims Ottelia alismoides (Hydrocharitaceae) is a freshwater macrophyte that, unusually, possesses three different CO2-concentrating mechanisms. Here we describe its leaf anatomy and chloroplast ultrastructure, how these are altered by CO2 concentration and how they may underlie C4 photosynthesis. Methods Light and transmission electron microscopy were used to study the anatomy of mature leaves of O. alismoides grown at high and low CO2 concentrations. Diel acid change and the activity of phosphoenolpyruvate carboxylase were measured to confirm that CAM activity and C4 photosynthesis were present. Key Results When O. alismoides was grown at low CO2, the leaves performed both C4 and CAM photosynthesis whereas at high CO2 leaves used C4 photosynthesis. The leaf comprised an upper and lower layer of epidermal cells separated by a large air space occupying about 22 % of the leaf transverse-section area, and by mesophyll cells connecting the two epidermal layers. Kranz anatomy was absent. At low CO2, chloroplasts in the mesophyll cells were filled with starch even at the start of the photoperiod, while epidermal chloroplasts contained small starch grains. The number of chloroplasts in the epidermis was greater than in the mesophyll cells. At high CO2, the structure was unchanged but the thicknesses of the two epidermal layers, the air space, mesophyll and the transverse-section area of cells and air space were greater. Conclusions Leaves of O. alismoides have epidermal and mesophyll cells that contain chloroplasts and large air spaces but lack Kranz anatomy. The high starch content of mesophyll cells suggests they may benefit from an internal source of CO2, for example via C4 metabolism, and are also sites of starch storage. The air spaces may help in the recycling of decarboxylated or respired CO2. The structural similarity of leaves at low and high CO2 is consistent with the constitutive nature of bicarbonate and C4 photosynthesis. There is sufficient structural diversity within the leaf of O. alismoides to support dual-cell C4 photosynthesis even though Kranz anatomy is absent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.