ere are many diseases in the deck pavement of long-span steel bridges under the action of vehicles, rainwater, and freezing. It is necessary to study a new type of pavement material with high waterproof property, light weight, and high bonding performance for steel deck pavement. Polyurethane cement composite (PUC) can be used for steel deck pavement. In order to find out the temperature effect on fatigue properties of PUC, the four-point bending fatigue test was carried out at different temperatures. In this paper, the optimum mix ratio of PUC was selected by compressive and flexural tests, and then the bending fatigue test was conducted under strain control mode. Under temperature and external force coupling condition, a method for predicting fatigue life of PUC is proposed by the combination of theoretical deduction and experimental research. e results show that the proposed formula can effectively describe the fatigue life and fatigue limit of PUC. Finally, compared with three different asphalt mixtures for steel deck pavement, it is found that the fatigue performance of polyurethane cement is better than that of asphalt mixture.
Polyurethane cement composite is a new organic–inorganic composite material with high strength, corrosion resistance, and fast curing. It is a complement and alternative to traditional cement materials. The flexural properties of polyurethane cement composites are the basic mechanical index of the material. In order to study the flexural properties under different temperature loads, a molecular model was established, the chemical reaction process of polyurethane cement and the temperature response mechanism was analyzed, and the preparation process of polyurethane cement was proposed. Then, bending tests were carried out in strain-controlled mode to obtain the specimens' bending strength and stiffness modulus under different temperature loads. The test results showed that the tensile strength of polyurethane cement decreased first, then increased, and finally decreased with the increase in temperature, while the bending stiffness modulus decreased with the increase in temperature. Combined with the theoretical derivation, the damage mode of the samples under different temperature loads was analyzed, and the “L-type” damage strain curve was obtained. The results showed that the proposed theory could effectively explain the mechanism of action and flexural properties of polyurethane cement composites under temperature loading, which is a significant improvement to the application of polyurethane cement composites in practical engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.