In this paper, a new Cartesian grid finite difference method is introduced to solve two-dimensional parabolic interface problems with second order accuracy achieved in both temporal and spatial discretization. Corrected central difference and the Matched Interface and Boundary (MIB) method are adopted to restore second order spatial accuracy across the interface, while the standard Crank-Nicolson scheme is employed for the implicit time stepping. In the proposed augmented MIB (AMIB) method, an augmented system is formulated with auxiliary variables introduced so that the central difference discretization of the Laplacian could be disassociated with the interface corrections. A simple geometric multigrid method is constructed to efficiently invert the discrete Laplacian in the Schur complement solution of the augmented system. This leads a significant improvement in computational efficiency in comparing with the original MIB method. Being free of a stability constraint, the implicit AMIB method could be asymptotically faster than explicit schemes. Extensive numerical results are carried out to validate the accuracy, efficiency, and stability of the proposed AMIB method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.