The mechanism by which mechanical force regulates the kinetics of a chemical reaction is unknown. Here, we use single-molecule force-clamp spectroscopy and protein engineering to study the effect of force on the kinetics of thiol͞disulfide exchange. Reduction of disulfide bonds through the thiol͞disulfide exchange chemical reaction is crucial in regulating protein function and is known to occur in mechanically stressed proteins. We apply a constant stretching force to single engineered disulfide bonds and measure their rate of reduction by DTT. Although the reduction rate is linearly dependent on the concentration of DTT, it is exponentially dependent on the applied force, increasing 10-fold over a 300-pN range. This result predicts that the disulfide bond lengthens by 0.34 Å at the transition state of the thiol͞disulfide exchange reaction. Our work at the single bond level directly demonstrates that thiol͞disulfide exchange in proteins is a force-dependent chemical reaction. Our findings suggest that mechanical force plays a role in disulfide reduction in vivo, a property that has never been explored by traditional biochemistry. Furthermore, our work also indicates that the kinetics of any chemical reaction that results in bond lengthening will be force-dependent.atomic force microscopy ͉ mechanochemistry T he intersection of force and chemistry has been studied for over a century, yet not much is known about this phenomenon compared with more common methods of chemical catalysis (1). There are a number of reasons for this discrepancy, but one of the most important factors remains that it is quite difficult to directly measure the effect of force on a bulk reaction. This difficulty arises because an applied force is not a scalar property of a system; it is associated with a vector. As a result, it is often not possible to directly probe the effect of force on a particular reaction because of heterogeneous application of force and a distribution of reaction orientations (1). To fully quantify the effect of an applied force on a chemical reaction, it is necessary to generate an experimental system where the reaction of interest is consistently oriented with respect to the applied force. Thus, recent advances in single-molecule techniques are particularly well suited to address this problem. The direct manipulation of single molecules allows for the application of force in a vector aligned with the reaction coordinate (2), avoiding the heterogeneity of bulk studies. Earlier works using singlemolecule techniques have described the rupture forces necessary to cleave single covalent bonds (reviewed in ref.
Traditionally viewed as an autodigestive pathway, autophagy also facilitates cellular secretion; however, the mechanisms underlying these processes remain unclear. Here, we demonstrate that components of the autophagy machinery specify secretion within extracellular vesicles (EVs). Using a proximity-dependent biotinylation proteomics strategy, we identify 200 putative targets of LC3-dependent secretion. This secretome consists of a highly interconnected network enriched in RNA-binding proteins (RBPs) and EV cargoes. Proteomic and RNA-profiling of EVs identifies diverse RBPs and small non-coding RNAs requiring the LC3-conjugation machinery for packaging and secretion. Focusing on two RBPs, heterogeneous nuclear ribonucleoprotein K (HNRNPK) and scaffold-attachment factor B (SAFB), we demonstrate these proteins interact with LC3 and are secreted within EVs enriched with lipidated LC3. Furthermore, their secretion requires the LC3-conjugation machinery, neutral sphingomyelinase 2 (nSMase2), and LC3-dependent recruitment of Factor-associated with nSMase2 activity (FAN). Hence, the LC3-conjugation pathway controls EV cargo loading and secretion.
The introduction of disulfide bonds into proteins creates additional mechanical barriers and limits the unfolded contour length (i.e., the maximal extension) measured by single-molecule force spectroscopy. Here, we engineer single disulfide bonds into four different locations of the human cardiac titin module (I27) to control the contour length while keeping the distance to the transition state unchanged. This enables the study of several biologically important parameters. First, we are able to precisely determine the end-to-end length of the transition state before unfolding (53 Angstrom), which is longer than the end-to-end length of the protein obtained from NMR spectroscopy (43 Angstrom). Second, the measured contour length per amino acid from five different methods (4.0 +/- 0.2 Angstrom) is longer than the end-to-end length obtained from the crystal structure (3.6 Angstrom). Our measurement of the contour length takes into account all the internal degrees of freedom of the polypeptide chain, whereas crystallography measures the end-to-end length within the "frozen" protein structure. Furthermore, the control of contour length and therefore the number of amino acids unraveled before reaching the disulfide bond (n) facilitates the test of the chain length dependence on the folding time (tau(F)). We find that both a power law scaling tau(F) lambda n(lambda) with lambda = 4.4, and an exponential scaling with n(0.6) fit the data range, in support of different protein-folding scenarios.
BtuF is the periplasmic binding protein (PBP) for the vitamin B12 transporter BtuCD, a member of the ATPbinding cassette (ABC) transporter superfamily of transmembrane pumps. We have determined crystal structures of Escherichia coli BtuF in the apo state at 3.0 Å resolution and with vitamin B12 bound at 2.0 Å resolution. The structure of BtuF is similar to that of the FhuD and TroA PBPs and is composed of two ␣/ domains linked by a rigid ␣-helix. B12 is bound in the "base-on" or vitamin conformation in a wide acidic cleft located between these domains. The C-terminal domain shares structural homology to a B12-binding domain found in a variety of enzymes. The same surface of this domain interacts with opposite surfaces of B12 when comparing ligand-bound structures of BtuF and the homologous enzymes, a change that is probably caused by the obstruction of the face that typically interacts with this domain by the base-on conformation of vitamin B12 bound to BtuF. There is no apparent pseudo-symmetry in the surface properties of the BtuF domains flanking its B12 binding site even though the presumed transport site in the previously reported crystal structure of BtuCD is located in an intersubunit interface with 2-fold symmetry. Unwinding of an ␣-helix in the C-terminal domain of BtuF appears to be part of conformational change involving a general increase in the mobility of this domain in the apo structure compared with the B12-bound structure. As this helix is located on the surface likely to interact with BtuC, unwinding of the helix upon binding to BtuC could play a role in triggering release of B12 into the transport cavity. Furthermore, the high mobility of this domain in free BtuF could provide an entropic driving force for the subsequent release of BtuF required to complete the transport cycle.
Transcription initiation by the sigma54 form of bacterial RNA polymerase requires hydrolysis of ATP by an enhancer binding protein (EBP). We present SAS-based solution structures of the ATPase domain of the EBP NtrC1 from Aquifex aeolicus in different nucleotide states. Structures of apo protein and that bound to AMPPNP or ADP-BeF(x) (ground-state mimics), ADP-AlF(x) (a transition-state mimic), or ADP (product) show substantial changes in the position of the GAFTGA loops that contact polymerase, particularly upon conversion from the apo state to the ADP-BeF(x) state, and from the ADP-AlF(x) state to the ADP state. Binding of the ATP analogs stabilizes the oligomeric form of the ATPase and its binding to sigma54, with ADP-AlF(x) having the largest effect. These data indicate that ATP binding promotes a conformational change that stabilizes complexes between EBPs and sigma54, while subsequent hydrolysis and phosphate release drive the conformational change needed to open the polymerase/promoter complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.