A novel method is proposed to manipulate beam by modulating light phase through a metallic film with arrayed nano-slits, which have constant depth but variant widths. The slits transport electro-magnetic energy in the form of surface plasmon polaritons (SPPs) in nanometric waveguides and provide desired phase retardations of beam manipulating with variant phase propagation constant. Numerical simulation of an illustrative lens design example is performed through finite-difference time-domain (FDTD) method and shows agreement with theory analysis result. In addition, extraordinary optical transmission of SPPs through sub-wavelength metallic slits is observed in the simulation and helps to improve elements' energy using factor.
The propagation and combination of surface plasmon polaritons (SPPs) in Y-shaped metallic nanochannels are investigated numerically via finite difference time domain (FDTD). It is shown that the behavior of SPPs in nano-size channels resembles that of light guiding in conventional waveguides, and SPPs can also be combined effectively with appropriately designed structures. The loss associated with metal absorption and scattering with the multiple reflections between slit openings on the bend angle are analyzed numerically. The Fabry-Perot cavity effect displayed by SPPs traveling in channels with finite length is discussed as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.