In recent years, with the development of computer science, deep learning is held as competent enough to solve the problem of inference and learning in high dimensional space. Therefore, it has received unprecedented attention from both the academia and the business community. Compared with CPU/GPU, FPGA has attracted much attention for its high-energy efficiency, short development cycle and reconfigurability in the aspect of deep learning algorithm. However, because of the limited research on OpenCL optimization on FPGA of deep learning algorithms, OpenCL tools and models applied to CPU/GPU cannot be directly used on FPGA. This makes it difficult for software programmers to use FPGA when implementing deep learning algorithms for a rewarding performance. To solve this problem, this paper proposed an OpenCL computational model based on FPGA template architecture to optimize the time-consuming convolution layer in deep learning. The comparison between the program applying the computational model and the corresponding optimization program provided by Xilinx indicates that the former is 8-40 times higher than the latter in terms of performance.
The existing motion recognition system has a low athlete tracking recognition accuracy due to the poor processing effect of recognition algorithm for edge detection. A machine vision-based gymnast pose-tracking recognition system is designed for the above problem. The software part mainly optimizes the tracking recognition algorithm and uses the spatiotemporal graph convolution algorithm to construct the sequence graph structure of human joints, completes the strategy of label subset division, and completes the pose tracking according to the change of information dimension. The results of the system performance test show that the designed machine vision-based gymnast posture tracking recognition system can enhance the accuracy of tracking recognition and reduce the convergence time compared with the original system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.