Molecules with large enough dipole moments can bind an electron by the dipole field, which has little effect on the molecular core. A molecular anion can be excited to a dipole-bound state, which can autodetach by vibronic coupling. Autodetachment spectroscopy of a complex anion cooled in a cryogenic ion trap is reported. Vibrational spectroscopy of the dehydrogenated uracil radical is obtained by a dipole-bound state with partial rotational resolution. Fundamental frequencies for 21 vibrational modes of the uracil radical are reported. The electron affinity of the uracil radical is measured accurately to be 3.4810±0.0006 eV and the binding energy of the dipole-bound state is measured to be 146±5 cm(-1). The rotational temperature of the trapped uracil anion is evaluated to be 35 K.
We report a photodetachment and high-resolution photoelectron imaging study of cold 2-hydroxyphenoxide anion, o - HO(C6H4)O(-), cooled in a cryogenic ion trap. Photodetachment spectroscopy revealed a dipole-bound state (DBS) of the anion, 25 ± 5 cm(-1), below the detachment threshold of 18 784 ± 5 cm−1 (2.3289 ± 0.0006 eV), i.e., the electron affinity of the 2-hydroxyphenoxy radical o - HO(C6H4)O(⋅). Twenty-two vibrational levels of the DBS are observed as resonances in the photodetachment spectrum. By tuning the detachment laser to these DBS vibrational levels, we obtain 22 high-resolution resonant photoelectron spectra, which are highly non-Franck-Condon due to mode-selective autodetachment and the Δv = - 1 propensity rule. Numerous Franck-Condon inactive vibrational modes are observed in the resonant photoelectron spectra, significantly expanding the vibrational information that is available in traditional high-resolution photoelectron spectroscopy. A total of 15 fundamental vibrational frequencies are obtained for the o - HO(C6H4)O(⋅) radical from both the photodetachment spectrum and the resonant photoelectron spectra, including six symmetry-forbidden out-of-plane modes as a result of resonant enhancement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.