The Kongur Shan and Muztaghata massifs, bounded by the Kongur Shan extensional system (KES), represent tectonic and topographic anomalies in the eastern Pamir region. They are ideal examples to study how normal faulting and surface erosion influence Quaternary exhumation/erosion of the dome system. We apply multiple geomorphic parameters, including hypsometric integral, stream length-gradient index, drainage basin shape, drainage basin asymmetry and ratio of valley floor width to valley height, for the catchments on both sides of the range. We first evaluated the validity of various indices and chose three active tectonic-sensitive indices to establish a newly-integrated parameter (Iat) that is used to measure relative intensities of tectonic activity in active orogens. Results suggest stronger tectonic activity west of the domes along the Kongur Shan normal fault (KSF) and Muji dextral strike-slip fault, compared to the eastern side, along the Ghez and Kalagile faults. This first-order observation reflects tectonic control on the topographic development of the domal structure, consistent with eastward crustal tilting, attested by older thermochronology ages to the east. On the western flank of the range, stronger tectonic activity occurs mostly on the Muji fault, Kingata Tagh - Kongur Shan fault segment, as well as along the western and southern Muztaghata segments of the Kongur Shan fault. This is consistent with field investigations of Quaternary offsets of landforms, which suggest continuous activity of the Muji fault and KSF since the late Miocene. Average basin-wide erosion rates derived from stream power models are highest near the Kongur Shan dome, and gradually decrease southwards and northwards, in agreement with the spatial pattern of long-term exhumation rates in the footwall of the KSF obtained by low-temperature thermochronology data. Positive correlation between exhumation/erosion rates and extensional rates along the active faults located west of the domes indicates that extensional deformation likely plays a dominant role in controlling focused dome exhumation/erosion. However, considering peaked exhumation/erosion rates, stronger rock resistivity and steeper glacial landforms, attest to the important role of glacial buzz-saw in reshaping the recent dome’s landscape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.