In this paper, a novel rare-earth-doped upconverted nanomaterial NaYF4:Yb,Tm fluorescent probe is reported, which can detect cancer-related specific miRNAs in low abundance. The detection is based on an upconversion of nanomaterials NaYF4:Yb,Tm, with emissions at 345, 362, 450, 477, 646, and 802 nm, upon excitation at 980 nm. The optimal Yb3+:Tm3+ doping ratio is 40:1, in which the NaYF4:Yb,Tm nanomaterials have the strongest fluorescence. The NaYF4:Yb, Tm nanoparticles were coated with carboxylation or carboxylated protein, in order to improve their water solubility and biocompatibility. The two commonly expressed proteins, miRNA-155 and miRNA-150, were detected by the designed fluorescent probe. The results showed that the probes can distinguish miRNA-155 well from partial and complete base mismatch miRNA-155, and can effectively distinguish miRNA-155 and miRNA-150. The preliminary results indicate that these upconverted nanomaterials have good potential for protein detection in disease diagnosis, including early cancer detection.
Background The accurate diagnosis and treatment of cancer cell lesions need a high standard of detection technology. Fluorescent probes to perform cancer biomarker detection have become a popular research issue. However, fluorescent probes still face enormous challenges of complex design and difficult detection. Results In this work, we propose a novel composite material UCNPs@SiO2 + QDs based on the combination of rare earth upconversions (UCNPs) and perovskite quantum dots (QDs) and design a new fluorescent probe MB-UCNPs@SiO2 + QDs with molecular beacon (MB) as the carrier, that can be excited by near-infrared light, emitted in the visible wavelength, specifically identified and highly sensitive. Under the excitation of 980 nm near-infrared light, the UCNPs and QDs in the composite produced the maximum efficiency of energy transfer through fluorescence resonance, and the multi-emission light of UCNPs synergistically excited the re-emission of QDs, and the energy transfer efficiency is 70.6%. By changing the doping ratio of QDs halogen elements in UCNPs@SiO2 + QDs, it is possible to modulate the precise luminescence of UCNPs@SiO2 + QDs in the entire wavelength range of visible light at different positions. The novel fluorescent probe is obtained using UCNPs@SiO2 + QDs and Black Hole Quencher-1 (BHQ1) quenching groups linked to the two respective sides of MB, selecting as the target of detection the myeloma cancer biomarker miRNA-155, a difficult diagnostic and complex developmental type, and have achieved specific recognition and low concentration of miRNA-155 and a detection limit of 73.5 pM. Conclusions This fluorescent probe design can provide new ideas for the early diagnosis and treatment of cancer, tumors, and cardiovascular diseases.
The accurate diagnosis and treatment of cancer cell lesions need a high standard of detection technology. Fluorescent probes to perform cancer biomarker detection have become a popular research issue. However, fluorescent probes still face enormous challenges of complex design and difficult detection. In this work, we propose a novel composite material UCNP@SiO2+QDs based on the combination of rare earth upconversion (UCNP) and perovskite quantum dots (QDs) and design a new fluorescent probe MB-UCNP@SiO2+QDs with molecular beacon (MB) as the carrier, that can be excited by near-infrared light, emitted in the visible wavelength, specifically identified and highly sensitive. Under the excitation of 980 nm near-infrared light, the UCNP and QDs in the composite produced the maximum efficiency of energy transfer through fluorescence resonance, and the multi-emission light of UCNP synergistically excited the re-emission of QDs, and the energy transfer efficiency is 70.6%. By changing the doping ratio of QDs halogen elements in UCNP@SiO2+QDs, it is possible to modulate the precise luminescence of UCNP@SiO2+QDs in the entire wavelength range of visible light at different positions. The novel fluorescent probe is obtained using UCNP@SiO2+QDs and Black Hole Quencher-1 (BHQ1) quenching groups linked to the two respective sides of MB, selecting as the target of detection the myeloma cancer biomarker miRNA-155, a difficult diagnostic and complex developmental type, and have achieved specific recognition and low concentration of miRNA-155 and a detection limit of 73.5 pM. This fluorescent probe design can provide new ideas for the early diagnosis and treatment of cancer, tumors, and cardiovascular diseases.
The accurate diagnosis and treatment of cancer cell lesions need a high standard of detection technology. Fluorescent probes to perform cancer biomarker detection have become a popular research issue. However, fluorescent probes still face enormous challenges of complex design and difficult detection. In this work, we propose a novel composite material UCNP@SiO2 + QDs based on the combination of rare earth upconversion (UCNPs) and perovskite quantum dots (QDs) and design a new fluorescent probe MB-UCNP@SiO2 + QDs with molecular beacon (MB) as the carrier, that can be excited by near-infrared light, emitted in the visible wavelength, specifically identified and highly sensitive. Under the excitation of 980 nm near-infrared light, the UCNPs and QDs in the composite produced the maximum efficiency of energy transfer through fluorescence resonance, and the multi-emission light of UCNPs synergistically excited the re-emission of QDs, and the energy transfer efficiency is 70.6%. By changing the doping ratio of QDs halogen elements in UCNP@SiO2 + QDs, it is possible to modulate the precise luminescence of UCNP@SiO2 + QDs in the entire wavelength range of visible light at different positions. The novel fluorescent probe is obtained using UCNP@SiO2 + QDs and Black Hole Quencher-1 (BHQ1) quenching groups linked to the two respective sides of MB, selecting as the target of detection the myeloma cancer biomarker miRNA-155, a difficult diagnostic and complex developmental type, and have achieved specific recognition and low concentration of miRNA-155 and a detection limit of 73.5 pM. This fluorescent probe design can provide new ideas for the early diagnosis and treatment of cancer, tumors, and cardiovascular diseases. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.