This study was undertaken to evaluate the effect of simvastatin, a cholesterol-lowering agent, on the Akt-mediated signaling pathway and neurogenesis in the dentate gyrus (DG) of the hippocampus in rats after traumatic brain injury (TBI). Adult male Wistar rats were divided into three groups: (1) sham group (n = 8); (2) saline control group (n = 40); and (3) simvastatin-treated group (n = 40). Controlled cortical impact (CCI) injury was performed over the left parietal lobe. Simvastatin was administered orally at a dose of 1 mg/kg starting at day 1 after TBI and then daily for 14 days. Bromodeoxyuridine (BrdU) was injected intraperitoneally into rats. A modified Morris Water Maze (WM) task was performed between 31 and 35 days after treatment to test spatial memory (n = 8/group). Animals were sacrificed at 1, 3, 7, 14, and 35 days after treatment (n = 8/group/time point). Western blot was utilized to investigate the changes in the Akt-mediated signaling pathway. Enzyme-linked immunosorbent assay (ELISA) analyses were employed to measure vascular endothelial growth factor (VEGF) and brain-derived neurotrophin factor (BDNF) expression. Immunohistochemical and fluorescent staining were performed to detect the BrdU- and neuronal nuclei (NeuN)/BrdU-positive cells. Our data show that simvastatin treatment increases phosphorylation of v-akt murine thymoma viral oncogene homolog (Akt), glycogen synthase kinase-3beta (GSK-3beta), and cAMP response element-binding proteins (CREB); elevates the expression of BDNF and VEGF in the DG; increases cell proliferation and differentiation in the DG; and enhances the recovery of spatial learning. These data suggest that the neurorestorative effect of simvastatin may be mediated through activation of the Akt-mediated signaling pathway, subsequently upregulating expression of growth factors and inducing neurogenesis in the DG of the hippocampus, thereby leading to restoration of cognitive function after TBI in rats.
Objective-Our previous studies demonstrated that simvastatin promotes neurological functional recovery after traumatic brain injury (TBI) in rat; however, the underlying mechanisms remain poorly understood. The purpose of this study was to investigate the anti-inflammatory effect of simvastatin by measuring the level of cytokines and activation of glial cells.Methods-Controlled cortical impact injury was performed in adult male Wistar rats. The rats were randomly divided into three groups: sham, saline control group and simvastatin treatment group. Simvastatin was administered orally starting at day 1 after TBI until sacrifice. Animals were sacrificed at 1, 3, 7, 14, and 35 days after treatment. Functional outcome was measured using modified neurological severity scores (mNSS). ELISA and immunohistochemical staining were employed to measure the expression of IL-1β, IL-6 and TNF-α, and to identify activated microglia and astrocytes.Results-At days 1 and 3 after simvastatin or saline treatment, cytokine levels in the lesion boundary zone were significantly higher in the simvastatin-treated rats and saline-treated rats compared to the sham group, peaking at day 3. Simvastatin only reduced the level of IL-1 β but not IL-6 and TNF-α compared with the saline group. Also, simvastatin reduced significantly the number of activated microglia and astrocytes compared to the saline control animals. There was also a trend towards improvement of mNSS score, reaching statistical significance (P=0.003) towards the end of the trial.Conclusion-Our data demonstrate that TBI causes inflammatory reaction, including increased levels of IL-1β, IL-6 and TNF-α, as well as activated microglia. Simvastatin selectively reduces IL-1β expression and inhibits the activation of microglia and astrocytes after TBI, which may be one of the mechanisms underlying the therapeutic benefits of simvastatin treatment of TBI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.