P2P (peer-to-peer) lending is an emerging online service that allows individuals to borrow money from unrelated person without the intervention of traditional financial intermediaries. In these platforms, borrowing limit and interest rate are two of the most notable elements for borrowers, which directly influence their borrowing benefits and costs, respectively. To that end, this paper introduces a BP neural network interval estimation (BPIE) algorithm to predict the borrowers' borrowing limit and interest rate based on their characteristics and simultaneously develops a new parameter optimization algorithm (GBPO) based on the genetic algorithm and our BP neural network predictive model to optimize them. Using real-world data from http://ppdai.com, the experimental results show that our proposed model achieves a good performance. is research provides a new perspective from borrowers in exploring the P2P lending. e case base and proposed knowledge are the two contributions for FinTech research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.