Background. Diabetic nephropathy (DN) is the most common microvascular complication of diabetes and has become the second leading cause of end-stage renal disease in the world. This study aims to clarify the regulatory mechanism of the lncRNA MSC-AS1/miR-325/cyclin G1 (CCNG1) axis in DN. Methods. The regulatory mechanism of lncRNA MSC-AS1/miR-325/CCNG1 was evaluated by RT-qPCR, CCK-8 assay, flow cytometry assay, RNA pull-down assay, ELISA, and western blot assay. Results. Upregulation of lncRNA MSC-AS1 was detected in DN patients and HRMC cells treated with high glucose (HG). Knockdown of lncRNA MSC-AS1 reduced the proliferation, fibrosis, and inflammation of HRMC cells induced by HG. In addition, lncRNA MSC-AS1 acts as a miR-325 sponge in the DN. CCNG1 is the direct target of miR-325, which can be positively regulated by lncRNA MSC-AS1 in DN. More importantly, downregulation of miR-325 and upregulation of CCNG1 can attenuate the protective effect of lncRNA MSC-AS1 knockdown on DN. Conclusion. lncRNA MSC-AS1 aggravates DN by downregulating miR-325 and upregulating CCNG1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.