Purpose-The shock absorber is an important component of vehicle suspension that attenuates the vehicle vibration. Its running state directly affects the performance of the vehicle suspension. The purpose of this paper is to quantitatively study the relationship between damping characteristics and air chamber and oil properties in single-tube pneumatic shock absorber. Design/methodology/approach-Combined with the principle of fluid dynamics and hydraulic transmission technology, the rebound stroke and compression stroke mathematical models, and damping characteristics simulation model are established to investigate the effect of the air chamber and oil property on damping characteristics. Findings-Research results show that the initial pressure of the air chamber is the key parameter which influences the damping characteristics of the shock absorber. The change of the initial pressure has more impact on damping force, and less impact on the speed characteristic; the initial volume of the air chamber almost has no effect on the damping characteristics. The density and viscosity of the oil have certain influence on the damping characteristics. Therefore, selecting suitable damping oil is very important. Originality/value-Using Matlab/Simulink software to build simulation models, its results are very accurate. The conclusions can provide a theoretical reference for the structure design of a single-tube pneumatic shock absorber.
Purpose In order to improve the ride comfort of vehicle suspension, this paper first proposed a shock absorber with four-stage adjustable damping forces. The purpose of this paper is to validate its modeling and characteristics, indicator diagrams and velocity diagrams, which are the main research points. Design/methodology/approach In order to validate the fluid flow modeling, a series of mathematical modeling is established and solved by using Matlab/Simulink. An experiment rig based on electro-hydraulic loading servo system is designed to test the prototype. Finally, indicator diagram and velocity diagram are obtained and compared both in simulation and experiments. Findings Results indicate that at the same damping position, damping force will increase with the rise of rod’s velocity: if the rod’s velocity is fixed, the damping force changes apparently by altering the damping position. The shock absorber is softest at damping position 1, and it is hardest at damping position 4; although there is no any badly empty stroke and skewness in indicator diagram by simulation, a temporary empty stroke happens at maximum displacement of piston rob, both in rebound and compression strokes. Research limitations/implications Compared with results of the simulation and experiments, the design of a four-stage damping adjustable shock absorber (FDASA) is validated correctly in application, and may improve the overall dynamic performance of vehicle. Originality/value This paper is mainly focused on the design and testing of an FDASA, which may obtain four-stages damping characteristics, that totally has a vital importance to improve the performance of vehicle suspension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.