RNA silencing is a sequence-specific RNA degradation mechanism that is operational in plants and animals. Here, we show that flock house virus (FHV) is both an initiator and a target of RNA silencing in Drosophila host cells and that FHV infection requires suppression of RNA silencing by an FHV-encoded protein, B2. These findings establish RNA silencing as an adaptive antiviral defense in animal cells. B2 also inhibits RNA silencing in transgenic plants, providing evidence for a conserved RNA silencing pathway in the plant and animal kingdoms.
Homology-dependent RNA silencing occurs in many eukaryotic cells. We reported recently that nodaviral infection triggers an RNA silencing-based antiviral response (RSAR) in Drosophila, which is capable of a rapid virus clearance in the absence of expression of a virus-encoded suppressor. Here, we present further evidence to show that the Drosophila RSAR is mediated by the RNA interference (RNAi) pathway, as the viral suppressor of RSAR inhibits experimental RNAi initiated by exogenous double-stranded RNA and RSAR requires the RNAi machinery. We demonstrate that RNAi also functions as a natural antiviral immunity in mosquito cells. We further show that vaccinia virus and human influenza A, B, and C viruses each encode an essential protein that suppresses RSAR in Drosophila. The vaccinia and influenza viral suppressors, E3L and NS1, are distinct double-stranded RNA-binding proteins and essential for pathogenesis by inhibiting the mammalian IFN-regulated innate antiviral response. We found that the double-stranded RNA-binding domain of NS1, implicated in innate immunity suppression, is both essential and sufficient for RSAR suppression. These findings provide evidence that mammalian virus proteins can inhibit RNA silencing, implicating this mechanism as a nucleic acid-based antiviral immunity in mammalian cells. R NA silencing is a unique RNA-guided gene regulatory mechanism that operates in a wide range of eukaryotic organisms from plants to mammals (1). A feature common to all RNA silencing processes is the production of 21-to 26-nt small RNAs from structured or double-stranded RNA (dsRNA) by the endoribonuclease Dicer (2-6). These small interfering RNAs (siRNAs) control the specificity of RNA silencing in a homology-dependent manner by means of an RNA-induced silencing complex (RISC), of which Argonaute-2 (AGO2) is an essential protein component (1,7,8). RNA silencing in fungi, plants, and worms involves a cellular RNA-dependent RNA polymerase (RdRP); however, the multiple-turnover RISC may mediate RNA silencing in absence of a cellular RdRP in Drosophila and mammalian cells (1, 9-11).We reported recently that infection of cultured Drosophila cells with the plus-strand RNA Nodavirus flock house virus (FHV), triggers specific silencing of FHV RNAs that is associated with accumulation of 22-nt siRNAs (12). Silencing of the replicating viral RNAs is RISC-dependent and sensitive to inhibition by the FHV B2 protein, as shown by the observation that B2 is essential for FHV infection of WT Drosophila cells but dispensable in cells depleted for AGO2 (12). These findings provided an example indicating an antiviral role for RNA silencing in the animal kingdom (12, 13), as has been established in higher plants (14)(15)(16)(17)(18).In this article, we report that specific RNA silencing was induced in mosquito cells in response to viral RNA replication and show that this mosquito antiviral immunity is RISCdependent and sensitive to suppression by the B2 protein encoded by either FHV or nodamura virus (NoV). We demonstrate th...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.