As an essential component of innate immunity, macrophages have multiple functions in both inhibiting or promoting cell proliferation and tissue repair. Diversity and plasticity are hallmarks of macrophages. Classical M1 and alternative M2 activation of macrophages, mirroring the Th1–Th2 polarization of T cells, represent two extremes of a dynamic changing state of macrophage activation. M1-type macrophages release cytokines that inhibit the proliferation of surrounding cells and damage contiguous tissue, and M2-type macrophages release cytokines that promote the proliferation of contiguous cells and tissue repair. M1–M2 polarization of macrophage is a tightly controlled process entailing a set of signaling pathways, transcriptional and posttranscriptional regulatory networks. An imbalance of macrophage M1–M2 polarization is often associated with various diseases or inflammatory conditions. Therefore, identification of the molecules associated with the dynamic changes of macrophage polarization and understanding their interactions is crucial for elucidating the molecular basis of disease progression and designing novel macrophage-mediated therapeutic strategies.
An increased population of CD4+CD25highFoxp3+ regulatory T cells (Tregs) in the tumor-associated microenvironment plays an important role in cancer immune evasion. However, the underlying mechanism remains unclear. Here we observed an increased secretion of miR-214 in various types of human cancers and mouse tumor models. Tumor-secreted miR-214 was sufficiently delivered into recipient T cells by microvesicles (MVs). In targeted mouse peripheral CD4+ T cells, tumor-derived miR-214 efficiently downregulated phosphatase and tensin homolog (PTEN) and promoted Treg expansion. The miR-214-induced Tregs secreted higher levels of IL-10 and promoted tumor growth in nude mice. Furthermore, in vivo studies indicated that Treg expansion mediated by cancer cell-secreted miR-214 resulted in enhanced immune suppression and tumor implantation/growth in mice. The MV delivery of anti-miR-214 antisense oligonucleotides (ASOs) into mice implanted with tumors blocked Treg expansion and tumor growth. Our study reveals a novel mechanism through which cancer cell actively manipulates immune response via promoting Treg expansion.
Tumour cells secrete exosomes that are involved in the remodelling of the tumour–stromal environment and promoting malignancy. The mechanisms governing tumour exosome release, however, remain incompletely understood. Here we show that tumour cell exosomes secretion is controlled by pyruvate kinase type M2 (PKM2), which is upregulated and phosphorylated in tumours. During exosome secretion, phosphorylated PKM2 serves as a protein kinase to phosphorylate synaptosome-associated protein 23 (SNAP-23), which in turn enables the formation of the SNARE complex to allow exosomes release. Direct phosphorylation assay and mass spectrometry confirm that PKM2 phosphorylates SNAP-23 at Ser95. Ectopic expression of non-phosphorylated SNAP-23 mutant (Ser95→Ala95) significantly reduces PKM2-mediated exosomes release whereas expression of selective phosphomimetic SNAP-23 mutants (Ser95→Glu95 but not Ser20→Glu20) rescues the impaired exosomes release induced by PKM2 knockdown. Our findings reveal a non-metabolic function of PKM2, an enzyme associated with tumour cell reliance on aerobic glycolysis, in promoting tumour cell exosome release.
Platelets play a significant role in atherosclerosis, stroke, and asthma through active interaction with neutrophils, monocytes, and vascular endothelial cells. The mechanism underlying these intercellular interactions, however, is incompletely understood. In this study, we report that platelets can remotely modulate vascular endothelial cell apoptosis through releasing microRNA-223 (miR-223)–containing microvesicles (MVs). First, platelets expressed abundant miRNAs, and miR-223 had the highest level of expression. Platelet miR-223 and other miRNAs can be upregulated by the stimulation with thrombopoietin (TPO) or thrombin. Unlike leukocytes, platelets contained high levels of pre-miRNAs, and upregulation of mature platelet miRNAs by TPO was correlated with decreased pre-miRNAs. Second, under stimulation with TPO, platelets released a large amount of MVs, which also contain higher levels of miR-223. Elevation of miR-223 inside circulating platelet MVs (P-MVs) was also observed in plasma samples from patients with enteritis, hepatitis, nephritis, or atherosclerosis. Third, incubation of P-MVs with HUVECs, which had significantly lower levels of miR-223 than platelets, showed that P-MVs effectively delivered miR-223 into HUVECs. Finally, in HUVECs, exogenous platelet miR-223 decreased the level of insulin-like growth factor 1 receptor and thus promoted HUVEC apoptosis induced by advanced glycation end products. The proapoptotic effect of P-MVs on HUVECs was largely abolished by depleting cellular miR-223 using anti–miR-223 antisense oligonucleotide. In conclusion, our study presents the first evidence, to our knowledge, that platelet-released miR-223 promotes advanced glycation end product–induced vascular endothelial cell apoptosis via targeting insulin-like growth factor 1 receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.