A piezoelectric-driven actuator based on the lateral motion principle is proposed in this paper, it can achieve large-stroke linear motion with high resolution. One parallelogram-type flexure hinge mechanism and one piezoelectric stack are used to generate the lateral motion. The mechanical structure and working principle are discussed. A prototype was fabricated and a series of experiments were carried out to investigate its working performance. The results indicate that the maximum moving speed is about 14.25 mm s −1 , and the maximum output force is 3.43 N, the minimum stepping displacement is about 0.04 μm. The experiments confirm that the lateral motion can be used to design piezoelectric actuators with a large moving stroke and high accuracy with a compact size. This actuator can be used in fast tool servo systems for ultraprecision machining, precision motors for aerospace, focusing systems for optics, and so on.
In this article, a cylindrical direct‐current triboelectric nanogenerator (DC‐TENG) that can generate an almost constant current output with a low crest factor by phase coupling is reported for the first time. Here, the influence of phases (P) and groups (G) on the DC‐TENG is investigated. Experiments show that the crest factor of current, significantly decreases as the phases increase, and the output performance significantly increases as the groups increase. One phase triboelectric power‐generating unit of the DC‐TENG with three‐phase and five‐group (3P5G) produces an open‐circuit voltage of 149.5 V, short‐circuit current 7.3 μA, and transferred charge of 56.7 nC at 600 rpm. The DC‐TENG can produce a coupling current of 21.6 μA and the average output power of 2.04 mW after each phase output is rectified and superimposed. Additionally, the crest factor of output current is reduced to 1.08, and the high‐performance characteristics of an almost constant direct‐current is achieved. The research is of considerable significance to the practical applications of TENGs in powering sensors of low consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.