Shape memory sponges are very promising in stopping the bleeding from noncompressible and narrow entrance wounds. However, few shape memory sponges have fast degradable properties in order to not hinder tissue healing. In this work, based on cryopolymerization, a succinic ester‐based sponge (Ssponge) is fabricated using gelatin and bi‐polyethylene glycol‐succinimidyl succinate (Bi‐PEG‐SS). Compared with the commercially available gelatin sponge (Csponge), Ssponge possesses better water/blood absorption ability and higher mechanical pressure over the surrounding tissues. Moreover, in the models of massive liver hemorrhage after transection and noncompressive liver wounds by penetration, Ssponge exhibits a better hemostasis performance than Csponge. Furthermore, in a liver regeneration model, Ssponge‐treated livers shows higher regeneration speed compared with Csponge, including a lower injury score, more cavity‐like tissues, less fibrosis and enhanced tissue regeneration. Overall, it is shown that Ssponge, with a fast degradation behavior, is not only highly efficient in stopping bleeding but also not detrimental for tissue healing, possessing promising clinical translational potential.
Fluorescent analysis of bone provides valuable insights into bone structures. However, conventional dyes suffer from low specificity on bone tissue, small stokes shift, short fluorescent lifetime, and aggregation‐caused quenching effect, which result in low efficacy and artifacts. In this work, we design an aggregation‐induced emission (AIE)‐active iridium(III) complex (Ir‐BP2) as a highly selective, convenient, nondestructiveness, and dual‐mode staining agent for bone analysis. Ir‐BP2 containing phosphonate groups selectively binds to hydroxyapatites, the main component of bone matrix, and exhibits turn‐on AIE phosphorescence with prolonged lifetime. Ir‐BP2 exhibits promising biosafety and offers higher accuracy in staining calcium deposits than conventional Alizarin Red S staining assay when it is employed in real‐time monitoring of osteogenesis differentiation process. A ready‐to‐use staining spray of Ir‐BP2 is fabricated. By using fluorescent imaging and lifetime imaging, Ir‐BP2 staining provides valuable insights into bone microstructure analysis, microdamage diagnosis, and bone growth state identification. Further, Ir‐BP2 is successfully applied on a human spine vertebra for diagnosing bone invasiveness of eosinophilic granuloma, validating its clinical practice. This work presents a powerful tool in bone analysis and will lead to new approaches for the diagnosis and treatment of bone‐related diseases.
Hydroxyapatite (HAp) as natural bone composition is highly osteoinductive. To harvest its osteoinductivity in bone regenerative engineering, the HAp-supporting hydrogel is urgently needed to minimize inhomogeneous aggregation of HAp. Here, we developed a HAp-stabilizing hydrogel based on peptide self-assembly. FmocFFRR was efficient for HAp-capping due to arginine-phosphate interaction. Tethering FmocFFRR on the HAp surface facilitated self-assembly to form FmocFFRR/HAp hybrid hydrogel, enabling stable dispersion of HAp in it. The molecular interactions between FmocFFRR and HAp particles were studied using microscopic and spectral characterizations. FmocFFRR/HAp hydrogel exhibited more enhanced mechanical properties than FmocFFRR. The biocompatibility of FmocFFRR/HAp hydrogel was verified using an ATP assay and live-dead staining assay. More importantly, FmocFFRR/HAp hydrogel not only enabled cell attachment on its surface, but also supported 3D cell culturing inside the hydrogel. Further, 3D culturing of MC3T3-E1 preosteoblasts inside FmocFFRR/HAp hydrogel significantly enhanced the expressions of osteogenesis markers, including alkaline phosphate (ALP), type-I collagen (COL1), and osteocalcin (OCN), demonstrating the promoting effect of osteoblast differentiation. These findings inspire its potential application in bone regenerative engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.