Autotaxin (ATX) is a prometastatic enzyme initially isolated from the conditioned medium of human melanoma cells that stimulates a myriad of biological activities, including angiogenesis and the promotion of cell growth, survival, and differentiation through the production of lysophosphatidic acid (LPA). ATX increases the aggressiveness and invasiveness of transformed cells, and ATX levels directly correlate with tumor stage and grade in several human malignancies. To study the role of ATX in the pathogenesis of malignant melanoma, we developed antibodies and small-molecule inhibitors against recombinant human protein. Immunohistochemistry of paraffinembedded human tissue shows that ATX levels are markedly increased in human primary and metastatic melanoma relative to benign nevi. Chemical screens identified several small-molecule inhibitors with binding constants ranging from nanomolar to low micromolar. Cell migration and invasion assays with melanoma cell lines show that ATX markedly stimulates melanoma cell migration and invasion, an effect suppressed by ATX inhibitors. The migratory phenotype can be rescued by the addition of the enzymatic product of ATX, LPA, confirming that the observed inhibition is linked to suppression of LPA production by ATX. Chemical analogues of the inhibitors show structure-activity relationships important for ATX inhibition and indicate pathways for their optimization. These studies suggest that ATX is an approachable molecular target for the rational design of chemotherapeutic agents directed against malignant melanoma. [Mol Cancer Ther 2008;7(10):3352 -62]
c-myc is essential for cell homeostasis and growth but lethal if improperly regulated. Transcription of this oncogene is governed by the counterbalancing forces of two proteins on TFIIH—the FUSE binding protein (FBP) and the FBP-interacting repressor (FIR). FBP and FIR recognize single-stranded DNA upstream of the P1 promoter, known as FUSE, and influence transcription by oppositely regulating TFIIH at the promoter site. Size exclusion chromatography coupled with light scattering reveals that an FIR dimer binds one molecule of single-stranded DNA. The crystal structure confirms that FIR binds FUSE as a dimer, and only the N-terminal RRM domain participates in nucleic acid recognition. Site-directed mutations of conserved residues in the first RRM domain reduce FIR's affinity for FUSE, while analogous mutations in the second RRM domain either destabilize the protein or have no effect on DNA binding. Oppositely oriented DNA on parallel binding sites of the FIR dimer results in spooling of a single strand of bound DNA, and suggests a mechanism for c-myc transcriptional control.
Oscillating cyclin-dependent kinase 1 (Cdk1) activity is the major regulator of cell-cycle progression, whereas the Aurora B kinase, as part of the chromosome passenger complex (CPC), controls critical aspects of mitosis such as chromosome condensation and biorientation on the spindle. How these kinases mechanistically coordinate their important functions is only partially understood. Here, using budding yeast, we identify a regulatory mechanism by which the Cdk1 kinase Cdc28 directly controls the Aurora kinase Ipl1. We show that Cdk1 phosphorylates Ipl1 on two serine residues in the N-terminal domain, thereby suppressing its association with the microtubule plus-end tracking protein Bim1 until the onset of anaphase. Failure to phosphorylate Ipl1 leads to its premature targeting to the metaphase spindle and results in constitutive Bim1 phosphorylation, which is normally restricted to anaphase. Cells expressing an Ipl1-Sli15 complex that cannot be phosphorylated by Cdk1 display a severe growth defect. Our work shows that Ipl1/Aurora is not only the catalytic subunit of the CPC but also an important regulatory target that allows Cdk1 to coordinate chromosome biorientation with spindle morphogenesis.
The peptide transporter (PTR) family represents a group of proton-coupled secondary transporters responsible for bulk uptake of amino acids in the form of di-and tripeptides, an essential process employed across species ranging from bacteria to humans. To identify amino acids critical for peptide transport in a prokaryotic PTR member, we have screened a library of mutants of the Escherichia coli peptide transporter YdgR using a high-throughput substrate uptake assay. We have identified 35 single point mutations that result in a full or partial loss of transport activity. Additional analysis, including homology modeling based on the crystal structure of the Shewanella oneidensis peptide transporter PepT so , identifies Glu 56 and Arg 305 as potential periplasmic gating residues. In addition to providing new insights into transport by members of the PTR family, these mutants provide valuable tools for further study of the mechanism of peptide transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.