ABSTRACT. Helicobacter pylori employs unique methods to colonize the stomach, which induces chronic inflammation. It is also able to avoid eradication by macrophages and other immune cells. Leukocyte cell-derived chemotaxin 2 (LECT2), a multi-functional cytokine involved in many pathological conditions, has recently been shown to activate macrophages via the CD209a receptor. Therefore, we aimed to investigate the effects of LECT2 on H. pylori-infected macrophages. Macrophages were treated with recombinant LECT2, and both their ability to kill H. pylori and produce nitric oxide were analyzed. Western blot was performed to determine nuclear translocation and protein phosphorylation of p65, a subunit of nuclear factor (NF)-kB. Transfection experiments were performed to analyze the signaling pathway of LECT2 in macrophages. We found that treatment with LECT2 enhanced H. pylori killing and nitric oxide production in macrophages. In addition, DNA-binding activity and nuclear translocation of p65 were up-regulated by LECT2 treatment. Furthermore, we found that NFkB activation by LECT2 was mediated by Raf-1 in macrophages, and Raf-1 phosphorylation was specifically altered in response to LECT2. Moreover, LECT2 induced Ser28 phosphorylation in the intracellular domain of CD209a. CD209a Ser28 phosphorylation was required for LECT2-induced Raf-1 and NF-kB activation in RAW264.7 macrophages. Our study showed that the effects of LECT2 on H. pylori killing and nitric oxide production were dependent on CD209a phosphorylation, Raf-1, and NF-kB activation. Together, these results demonstrate for the first time that exposure to LECT2 can modulate specific intracellular mechanisms downstream of CD209a to enhance H. pylori killing and nitric oxide production in macrophages.
Streptococcus suis is regarded as one of the major pathogens of pigs, and Streptococcus suis type 2 (SS2) is considered a zoonotic bacterium based on its ability to cause meningitis and streptococcal toxic shock-like syndrome in humans. Many bacterial species contain genes encoding serine/threonine protein phosphatases (STPs) responsible for dephosphorylation of their substrates in a single reaction step. This study investigated the role of stp1 in the pathogenesis of SS2. An isogenic stp1 mutant (Δstp1) was constructed from SS2 strain ZJ081101. The Δstp1 mutant exhibited a significant increase in adhesion to HEp-2 and bEnd.3 cells as well as increased survival in RAW264.7 cells, as compared to the parent strain. Increased survival in macrophage cells might be related to resistance to reactive oxygen species since the Δstp1 mutant was more resistant than its parent strain to paraquat-induced oxidative stress. However, compared to parent strain virulence, deletion of stp1 significantly attenuated virulence of SS2 in mice, as shown by the nearly double lethal dose 50 value and the lower bacterial load in organs and blood in the murine model. We conclude that Stp1 has an essential role in SS2 virulence.
Hematopoietic stem/progenitor cells (HSPCs) generate the entire repertoire of immune cells in vertebrates and play a crucial role during infection. Although two copies of CXC motif chemokine receptor 4 (CXCR4) genes are generally identified in teleosts, the function of teleost CXCR4 genes in HSPCs is less known. In this study, we identified two CXCR4 genes from a teleost, ayu (Plecoglossus altivelis), named PaCXCR4a and PaCXCR4b. PaCXCR4b was constitutively expressed in ayu HSPCs, whereas PaCXCR4a was induced by LPS treatment. The stromal-derived factor-1-binding activity of CXCR4b was significantly higher than that of CXCR4a, whereas the LPS-binding activity of CXCR4a was significantly higher than that of CXCR4b in the teleosts ayu, large yellow croaker (Larimichthys crocea), and tiger puffer (Takifugu rubripes). CXCR4a + HSPCs were mobilized into blood by LPS, whereas CXCR4b + HSPCs were mobilized by leukocyte cell-derived chemotaxin-2. PaSDF-1 and PaCXCR4b, but not PaCXCR4a, inhibited HSPC proliferation by regulating reactive oxygen species levels. Compared with PaCXCR4b + HSPCs, PaCXCR4a + HSPCs preferentially differentiated into myeloid cells in ayu by maintaining high stem cell leukemia expression. These data suggest that the two copies of CXCR4s achieve a division of labor in the regulation of teleost HSPC homeostasis, supporting the concept that subfunctionalization after gene duplication in teleosts may stabilize the immune system.
To examine if the molecular chaperone DnaK operon proteins of Streptococcus suis type 2 (SS2) are involved in adhesion to host cells, the abundance values of these proteins from the surface of two SS2 strains of different adhesion capability were compared. Their roles in growth and adhesion to human laryngeal epithelial cell line HEp-2 cells were investigated on SS2 strain HA9801 and its mutants with DnaK operon genes partially knocked-out (PKO mutant) under heat stress. The major difference was that DnaJ was more abundant in strain HA9801 than in strain JX0811. Pretreatment of the bacteria with hyperimmune sera to DnaJ, but not with those to other proteins, could significantly reduce SS2 adhesion to HEp-2 cells. PKO of dnaJ g ene resulted in decreased SS2 growth at 37 °C and 42 °C, and reduced its adhesion to HEp-2 cells. The wild-type strain stressed at 42 °C had increased expression of DnaJ on its surface and elevated adhesion to HEp-2 cells, which was also inhibitable by DnaJ specific antiserum. These results indicate that the DnaJ of S. suis type 2 is important not only for thermotolerance but also for adhesion to host cells. Because DnaJ expression is increased upon temperature upshift with increased exposure on the bacterial surface, the febrile conditions of the cases with systemic infections might help facilitate bacterial adhesion to host cells. DnaJ could be one of the potential candidates as a subunit vaccine because of its good immunogenicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.