Background:
Glutathione (GSH), the primary antioxidant in cells, could fight against oxidative stress. Tumor cells display a higher GSH level than normal cells for coping with the hyperoxidative state, which meets the requirements of enhanced metabolism and vicious proliferation. Therefore, the consumption of GSH will lead to cell redox imbalance and impede life activities. Herein, targeted sorafenib (SFB) loaded manganese doped silica nanoparticle (FaPEG-MnMSN@SFB) was constructed, which could destroy the intracellular redox homeostasis by consuming GSH.
Methods:
In this study, MnMSN was prepared by an optimized one-pot Stober's method for loading SFB, and FaPEG chain was modified on the surface of MnMSN to achieve long circulation and targeted delivery. The anticancer efficacy and mechanism of the designed FaPEG-MnMSN@SFB were assessed both
in vitro
and
in vivo.
Results:
FaPEG-MnMSN@SFB exhibited efficient antitumor activity by dual depleting intracellular GSH (the degradation of MnMSN would consume intracellular GSH and the SFB would inhibit the effect of X
c
-
transport system to inhibit GSH synthesis). Moreover, disruption of redox balance would lead to apoptosis and reactive oxygen species (ROS)-dependent ferroptosis of tumor cells.
Conclusion:
Such a GSH-starvation therapeutic strategy would cause multi-path programmed cell death and could be a promising strategy for cancer therapy.
Increasing studies have demonstrated that atherosclerosis is a chronic immunoinflammatory disease, and that oxidized low-density lipoprotein (oxLDL)-specific T cells contribute to the autoimmune process in atherosclerosis. Oral administration of oxLDL, which was identified as a candidate autoantigen in atherosclerosis, was shown to induce tolerance and suppress atherogenesis. However, the precise mechanisms of mucosal tolerance induction, in particular nasal tolerance, remain unknown. In this study, we explored the effect of nasal oxLDL on atherosclerosis as well as the cellular and molecular mechanisms leading to atheroprotective responses, and then found that nasal oxLDL drastically ameliorate the initiation (47.6 %, p < 0.001) and progression (21.1 %, p = 0.001) of atherosclerosis. Most importantly, a significant 35.8 % reduction of the progression of atherosclerosis was observed in the enhanced immunization group (p < 0.001). These effects were accompanied by a significant increase in CD4(+) latency-associated peptide (LAP)(+) regulatory T cells (Tregs) and CD4(+)CD25(+)Foxp3(+) Tregs in spleens and cervical lymph nodes, together with increased transforming growth factor (TGF)-β production and suppressed T-helper cells type 1, 2, and 17 immune responses. Surprisingly, neutralization of TGF-β in vivo partially counteracted the protective effect of nasal oxLDL treatment, indicating that the presence of TGF-β was indispensable to CD4(+)LAP(+) Tregs and CD4(+)CD25(+)Foxp3(+) Tregs to acquire regulatory properties. Our studies suggest that CD4(+)LAP(+) Tregs and CD4(+)CD25(+)Foxp3(+) Tregs induced by nasal delivery of oxLDL can inhibit oxLDL-specific T cells response and ameliorate atherosclerosis process.
Acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality worldwide. The exploration of new biomarkers with high sensitivity and specificity for early diagnosis of AMI therefore becomes one of the primary task. In the current study, we aim to detect whether there is any heart specific long noncoding RNA (lncRNA) releasing into the circulation during AMI, and explore its function in the neonatal rat cardiac myocytes injury induced by H2O2. Our results revealed that the cardiac-specific lncRNA MHRT (Myosin Heavy Chain Associated RNA Transcripts) was significantly elevated in the blood from AMI patients compared with the healthy control (*p<0.05). Using an in vitro neonatal rat cardiac myocytes injury model, we demonstrated that lncRNA MHRT was upregulated in the cardiac myocytes after treatment with hydrogen peroxide (H2O2) via real-time RT-PCR (qRT-PCR). Furthermore, we knockdowned the MHRT gene by siRNA to confirm its roles in the H2O2-induced cardiac cell apoptosis, and found that knockdown of MHRT led to significant more apoptotic cells than the non-target control (**p<0.01), indicating that the lncRNA MHRT is a protective factor for cardiomyocyte and the plasma concentration of MHRT may serve as a biomarker for myocardial infarction diagnosis in humans AMI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.