Summary
Root foraging and root physiology such as exudation of carboxylates into the rhizosphere are important strategies for plant phosphorus (P) acquisition. We used 100 chickpea (Cicer arietinum) genotypes with diverse genetic backgrounds to study the relative roles of root morphology and physiology in P acquisition.
Plants were grown in pots in a low‐P sterilized river sand supplied with 10 μg P g−1 soil as FePO4, a poorly soluble form of P.
There was a large genotypic variation in root morphology (total root length, root surface area, mean root diameter, specific root length and root hair length), and root physiology (rhizosheath pH, carboxylates and acid phosphatase activity). Shoot P content was correlated with total root length, root surface area and total carboxylates per plant, particularly malonate. A positive correlation was found between mature leaf manganese (Mn) concentration and carboxylate amount in rhizosheath relative to root DW.
This is the first study to demonstrate that the mature leaf Mn concentration can be used as an easily measurable proxy for the assessment of belowground carboxylate‐releasing processes in a range of chickpea genotypes grown under low‐P, and therefore offers an important breeding trait, with potential application in other crops.
We used Populus yunnanensis Dode., a native dioecious species in southwestern China, as a model species to study morphological, physiological, biochemical and ultrastructural responses to drought, salinity and their combination. Females exhibited more growth inhibition, gas exchange rate depression and reactive oxygen species (ROS) accumulation; higher lipid peroxide levels, lower osmotic adjustment capacity and ascorbate-glutathione cycle enzyme activities; and more damage to cell organelles than did males under drought, salinity and especially under their combination. In addition, we found sex-specific responses in total chlorophyll content (TC), carotenoid concentration and carbon isotope composition under different osmotic stresses. Our results indicated that: (1) females are more sensitive and suffer from greater negative effects than do males under drought, salinity and especially under their combination; (2) sexual differences in adaptive responses to drought, salinity and their combination are context dependent; and (3) sex-specific reactions under a combination of stresses are distinct from single-stress responses. Thus, these results provide evidence for adaptive differentiation between sexes in responses to osmotic stresses and in the sensitivity to environmental change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.