Abstract. The potential impacts of dust aerosols and atmospheric convective available potential energy (CAPE) on the vertical development of precipitating clouds in southeastern China (20–30∘ N, 110–125∘ E) in June, July, and August from 2000 to 2013 were studied using multisource observations. In southeastern China, heavy-dust conditions are coupled with strong northerly winds that transport air masses containing high concentrations of mineral dust particles, with cold temperatures, and with strong wind shear. This leads to weaker CAPE on dusty days compared with that on pristine days. Based on satellite observations, precipitating drops under dusty conditions grow faster in the middle atmospheric layers (with a temperature of between −5 and +2 ∘C) but slower in the upper and lower layers compared with their pristine counterparts. For a given precipitation top height (PTH), the precipitation rate under dusty conditions is lower in the upper layer but higher in the middle and lower layers. Moreover, the associated latent heating rate released by precipitation in the middle layer is higher. The precipitation top temperature (PTT) shows a fairly good linear relationship with the near-surface rain rate (NSRR): the linear regression slope between the PTT and NSRR is stable under dusty and pristine conditions. However, the PTT0 (the PTT related to rain onset) at the onset of precipitation is highly affected by both the CAPE and aerosol conditions. On pristine days, a stronger CAPE facilitates the vertical development of precipitation and leads to a decrease in PTT0, at a rate of −0.65 ∘C per 100 J kg−1 of CAPE for deep convective precipitation (with a variation of 15 %) and at a rate of −0.41 ∘C per 100 J kg−1 of CAPE for stratiform precipitation (with variation of 12 %). After removing the impacts of CAPE on PTT, dust aerosols led to an increase in PTT0, at a rate of +4.19 ∘C per unit aerosol optical depth (AOD) for deep convective precipitation and at a rate of +0.35 ∘C per unit AOD for stratiform precipitation. This study showed clear evidence that meteorological conditions and aerosol conditions combine to impact the vertical development of precipitation clouds. A quantitative estimation of the sensitivity of PTT to CAPE and dust was also provided.
A heavy dust storm originating in Mongolia and Inner Mongolia traveled to Northeast China and met a midlatitude frontal system on May 3, 2017. The potential ice nuclei (IN) effects of mineral dust aerosols on the vertical structure of clouds, precipitation, and latent heat (LH) were studied using Global Precipitation Mission (GPM) satellite observations and Weather Research and Forecasting (WRF) model simulations. The WRF simulations correctly captured the main features of the system, and the surface rain rate distribution was positively correlated with data retrieved from the GPM Microwave Imager. Moreover, the correlation coefficient increased from 0.31 to 0.54 with increasing moving average window size. The WRF-simulated rainfall vertical profiles are generally comparable to the GPM Dual-Frequency Precipitation Radar (DPR) observations, particularly in low layers. The joint probability distribution functions of the rain rate at different altitudes from the WRF simulation and GPM observations show high positive correlation coefficients of ~0.80, indicating that the assumptions regarding the raindrop size distribution in the WRF model and DPR retrieval were consistent. Atmospheric circulation analysis and aerosol optical depth observations from the Himawari-8 satellite indicated that the dust storm entered only a narrow strip of the northwest edge of the frontal precipitation system. The WRF simulations showed that in carefully selected areas of heavy dust, dust can enhance the heterogeneous ice nucleation process and increase the cloud ice, snowfall, high-altitude precipitation rate, and LH rate in the upper layers. This effect is significant at temperatures of −15 °C to −38 °C and requires dust number concentrations exceeding 10<sup>6</sup> m<sup>−</sup><sup>3</sup>. It is important to accurately classify the dusty region in this type of case study. In the selected vertical cross section, the WRF-simulated and DPR-retrieved LH have comparable vertical shapes and amplitudes. Both results reflect the structure of the tilted frontal surface, with positive LH above it and negative LH below it. The simulated area-averaged LH profiles show positive heating in the entire column, which is a convective-dominated region, and this feature is not significantly affected by dust. DPR-based LH profiles show stratiform-dominated or convective-dominated shapes, depending on the DPR retrieval product.
Abstract. The potential impacts of dust aerosol and atmospheric convective available potential energy (CAPE) on the vertical development of precipitating clouds in eastern China were studied using multiple-sources observations. In the study area, heavy dusty condition is coupled with strong north wind which carried airmass contained high concentration of mineral dust particles with cold temperature and strong wind shear. This leads to weaker CAPE in dusty days comparing with that in pristine days. Based on satellite observations, the precipitating drops under dusty condition grow faster at middle layer (with temperature -5 °C to +2 °C) but slower at upper and lower layer comparing with the pristine counterpart. For a given precipitation top height, the precipitation rate under dusty condition is weaker in upper layer but heavier at middle and lower layer. And the associated latent heating rate released by precipitation at middle layer is stronger. The precipitation top temperature (PTT) shows fairly good linear relationship with near surface rain rate (NSRR). The linear regression slope between PTT and NSRR are stable at dusty and pristine conditions. However, the PTT0 (precipitation top temperature related to rain onset) at the onset of rain are highly affected by both CAPE and aerosol condition. In pristine days, stronger CAPE facilitate the vertical development of precipitation and leads to a decrease of PTT0 at the rate of -0.65 °C per 100 J kg-1 CAPE for deep convective precipitation with variation of 15 %, and by -0.41 °C per 100 J kg-1 CAPE for stratiform precipitation with variation of 12 %. After removing the impacts of CAPE on PTT, dust aerosols lead an increase of PTT at the rate by +4.19 °C per unit AOD for deep convective precipitation and by +0.35 °C per unit AOD for stratiform precipitation. This study showed clear evidence that meteorology conditions are combined with aerosol condition together to affect the vertical development of precipitation clouds. And quantitative estimation of the sensitivity of PTT to CAPE and dust were provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.