In this paper, a novel electro-optic chaotic system with enhanced nonlinearity by deep learning (ENDL) is proposed to achieve time-delay signature (TDS) elimination. A long-short term memory network (LSTM) is trained by a specially designed loss function to enhance the nonlinear effect that can hide the TDS of the system. For the first time, the trained deep learning module is put into a single feedback loop to participate in chaos generation. Simulation results show that the ENDL system can eliminate TDS and increase the bandwidth to more than 31GHz when the feedback intensity is very low (α = 4V). Moreover, the complexity of the chaotic output can be improved with permutation entropy (PE) reaching 0.9941. The synchronization result shows that the ENDL system has high sensitivity to TDS but has low sensitivity to the feedback intensity, thus the system has both high security and high robustness. This system has an uncomplicated synchronization structure and high flexibility, and it opens up a new direction for high-quality chaos generation.
In this paper, a novel electro-optic chaotic system based on the logistic map feedback (EOLM) is proposed. The logistic map is used to introduce additional nonlinear effects into the electro-optic feedback loop. The simulation results show that, with the increase of logistic map iterations N, the bandwidth and permutation entropy of the chaotic output can be significantly increased, and the spectrum is flatter. The time-delay signature (TDS) of the system can be concealed within the appropriate range of values of parameters, which ensures the security of the key. Synchronization results show that the system is not only sensitive to time delay T but is also sensitive to the feedback intensity β, so β is also the key of the system. Utilizing the sensitivity to β, a dynamic EOLM communication system with changing key (DEOLM) is designed. Based on chaotic self-control, the chaotic optical signal is transformed nonlinearly to generate the control signal, which drives the gain coefficient of the amplifier to change dynamically, so as to realize the changing of β. Simulation of communication performance shows that the DEOLM system greatly raises the difficulty for the eavesdropper to crack the message and improves the confidentiality of communication.
In this paper, a scheme to realize encryption and digital identity authentication at the same time is proposed for enhancing the physical-layer security of point-to-point optical links (PPOL). Exploiting identity code encrypted by the key as authentication information effectively resists passive eavesdropping attacks in fingerprint authentication. The proposed scheme theoretically realizes secure key generation and distribution (SKGD) by phase noise estimation of the optical channel and the generation of identity codes with good randomness and unpredictability by the four-dimensional (4D) hyper-chaotic system. The local laser, erbium doped fiber amplifier (EDFA), and public channel provide the entropy source of uniqueness and randomness to extract symmetric key sequences for legitimate partners. The simulation conducted in a quadrature phase shift keying (QPSK) PPOL system over 100km standard single mode fiber verify successfully that 0.95Gbit/s error-free SKGD. The unpredictability and high sensitivity to the initial value and control parameters of the 4D hyper-chaotic system provide a huge space of ~10125 for identity codes, which is sufficient to resist exhaustive attack. With the proposed scheme, the security level of key and identity can be increased markedly.
To improve the output performance of the classical all-optical chaotic system and solve the security problems of its key exposure and small key space, a new chaotic system, to the best of our knowledge, based on logistic map post-processing is proposed. In terms of the general output performance of the system, the spectrum of the proposed system is flatter than the classical system. Through a bifurcation diagram and permutation entropy analysis, it is found that the output of the system is extremely complex. In terms of security, the simulation results show that, with a reasonable selection of system parameters, key hiding can be achieved under a large parameter range. Moreover, through the sensitivity analysis of logistic parameters, it can be seen that the introduction of logistic parameters can improve the key space of the system and further improve the security of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.