Necrotic enteritis (NE) is a severe intestinal disease, which can change gut microbiota and result in a high cost for the poultry industry worldwide. However, little is known regarding how the gut microbiota of NE chicken ileum are changed by Bacillus licheniformis. This study was conducted to investigate how ileum microbiota structure was changed by B. licheniformis in broiler chickens challenged with Clostridium perfringens-induced NE through Illumina MiSeq sequencing. The broilers were randomly separated into four groups: the negative control group (NC), the positive control group (PC), the fishmeal and coccidia group (FC), and the PC group supplied with feed containing B. licheniformis (BL). Compared to the PC and FC, alpha diversity, beta diversity, and the bacterial taxa of the ileum microbiota were more similar in BL and NC. Some genera, which were related to the NE control, became insignificant in BL with NC, such as Lactobacillus, Lactococcus, Bacteroides, Ruminococcus and Helicobacter. The PICRUSt analysis revealed that a tumour suppressor gene, p53, which was negatively correlated with Helicobacter, was enriched in the BL group. Our findings showed that the ileum microbiota disorder caused by NE in chickens was normalized by dietary B. licheniformis supplementation.Necrotic enteritis (NE) in chickens, which was first reported by Parish in 1961 1 , is a common illness caused by Clostridium perfringens 2 . There is increasing evidence that NE outbreaks in broiler chickens have a severe economic impact and globally cost over $2 billion annually in losses and disease control because of the high mortality rates and reduced growth performance 3 . NE not only causes economic losses but also results in illnesses in humans. NE in chickens can cause a threat to public health through the food chain by C. perfringens 4 . C. perfringens is a strictly anaerobic gram-positive bacterium, which can form spores. C. perfringens commonly presents in the intestinal tract of chickens but is not pathogenic and causes enterotoxaemia only under certain conditions. An experimental disease challenge trial showed that it is necessary to introduce induction factors, such as Eimeria co-infection and high protein feed supplementation (like fishmeal), to cause diseases 5,6 . Research on NE in chickens has been conducted for decades, but it is still one of the major challenges in the poultry industry. This is especially true since in-feed antibiotics have been banned in more and more countries 7 , and it is increasingly important to search for alternatives for the treatment of NE in chickens.Probiotics are "friendly" bacteria that help to maintain a normal balance in the intestinal tract by aiding normal digestion, supporting the immune system and promoting overall health 8 . They can likely prevent and treat disease effectively by mainly modulating mucosal immune activity and epithelial barrier function as a biological antagonist, which has already been proven through clinical trials for maintaining disease treatment 9 . In addition...
Clostridium perfringens can induce necrotic enteritis of chickens, which causes large economic losses every year. Bacillus licheniformis, a probiotic, can inhibit the growth of pathogenic bacteria such as Clostridium perfringens, thereby improving the health status of chickens. However, from a microbial ecology perspective, the mechanisms by which alterations to the gut microbiota improve health remain unknown. In this study, we used Illumina MiSeq sequencing to investigate the cecal microbiota of a negative control group (NC), a C. perfringens and Eimeria challenge group with fishmeal supplementation (PC), a group supplemented with fishmeal and infected with coccidia (FC), and group PC with B. licheniformis supplementation (BL). We found that the health status of C. perfringens-challenged chickens was compromised, and that B. licheniformis improved the growth of the chickens challenged with pathogens. Microbial diversity analysis and taxonomic profiling of groups NC, PC, and FC revealed a disturbed cecal microflora of the birds with C. perfringens. We also characterized the microbiota of the chickens in the BL group using several methods. Principal coordinate analysis demonstrated that, compared with group PC, the bacterial community structure of group BL was more similar to that of group NC. Linear discriminant analysis with effect size revealed less differentially represented bacterial taxa between groups BL and NC than between groups PC and NC. In addition, groups BL and NC appeared to have similar overrepresented microbial taxa (such as Bacteroides, Helicobacter, Megamonas, and Akkermansia) compared with group PC. Finally, a phylogenetic investigation of communities by reconstruction of unobserved states analysis indicated that large differences existed between group PC and groups NC and BL. In conclusion, pre-treatment with B. licheniformis reduced the disturbance of the cecal microbiome induced by challenge with C. perfringens and other factors in broiler chickens.
Abstract:A thermo-responsive cellulose-based material (cellulose-g-PNIPAAm) was prepared by grafting N-isopropylacrylamide (NIPAAm) onto bagasse pulp cellulose via Ce (IV)-initiated free radical polymerization. The surfaces of the obtained cellulose-g-PNIPAAm paper showed a rapid wettability conversion from being hydrophilic (water contact angles (WCA) of 0 • ) at 25 • C to becoming hydrophobic (WCA of 134.2 • ) at 45 • C. Furthermore, the thermo-responsive mechanism of cellulose-g-PNIPAAm was examined by the in situ variable-temperature 13 C NMR, 1 H NMR and AFM analysis. At the same time, the resulting cellulose paper was applied for a switchable separation of oil/water mixtures. Water can pass through the paper under 45 • C, while oil is kept on the paper. When the temperature is above 45 • C, oil can permeate through the paper, while water cannot pass through the water. Moreover, the paper exhibited excellent regeneration performance after five cycles and maintained its switchable wettability.
Yupingfeng (YPF) is a kind of Astragali radix-based ancient Chinese herbal supplemented with Atractylodis Macrocephalae Rhizoma and Radix Saposhnikoviae. Increasing evidence has proven the beneficial immunomodulating activity of YPF. However, the action mechanism(s) of it is not known. Here, we explored the immunomodulatory activity of unfermented Yupingfeng polysaccharides (UYP) and fermented Yupingfeng polysaccharides (FYP) obtained using Rhizopus oligosporus SH in weaning Rex rabbits. The results showed that both UYP and FYP exhibited notable growth-promoting and immune-enhancing activities, improvement of the intestinal flora homeostasis, and maintenance of intestinal barrier integrity and functionality. Notably, compared with UYP, FYP effectively enhanced average daily gain, organ indices, interleukin-2 (IL-2), IL-4, IL-10, tumor necrosis factor-alpha (TNF-α), TLR2, and TLR4 mRNA levels in spleen, IL-1, IL-2, IL-4, IL-6, IL-10, IL-12, TNF-α, and IFN-γ protein concentrations in serum, and TLR2 and TLR4 mRNA expressions in the gastrointestinal tract (GIT). Moreover, FYP exhibited greater beneficial effects in improving the intestinal flora, including augment flora diversity and the abundance of cellulolytic bacteria, reduction the abundance of Streptococcus spp. and Enterococcus spp. in the GIT, particularly the foregut and maintaining the intestinal barrier integrity and functionality by upregulating zonula occludens 1, claudin, polymeric immunoglobulin receptor, trefoil factor, and epidermal growth factor mRNA levels in the jejunum and ileum. Our results indicated the immunoenhancement effect of FYP is superior over that of UYP, which is probably related with the amelioration of the intestinal microflora and intestinal barrier in the foregut.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.