Biofuels such as renewable alkanes and higher alcohols have drawn considerable interests for the use in internal combustion engines. Especially, higher alcohols could be used as a blending agent for diesel fuels. Herein, carbon supported phosphated ruthenium-molybdenum (RuMoP) catalysts were employed in continuous trickle-bed reactor for converting sorbitol into renewable alkanes and higher alcohols. The results showed that RuMoP on an active carbon (AC) support presented a complete sorbitol conversion and high yields of alkanes and alcohols in gasoline and diesel range. Subsequently, carbon nanotube (CNT) supported RuMoP was prepared and studied in detail for comparison. RuMoP/CNT presented a low CÀC bond cracking property in sorbitol conversion and high selectivity of C6 products in gas-phase (C6 alkane, 74.7 %) and oil-phase (C6 alkane and alcohols, 87.8 %). Finally, detailed characterizations (N 2 -adsorption, XRD, HRTEM, XPS, NH 3 -TPD, Py-IR spectrums, etc.) were performed over relevant catalysts (RuMoP/C and RuMoP/CNT) for correlating their catalytic and physicochemical properties.[a] Dr.
Biomass furfural-like compounds are chemicals that cannot be extracted from fossil materials, through which a large number of fine chemicals and fuel additives can be opened up, but one big efficiency problem during the transformation is the accumulation of oligomers. Here, we propose a novel and efficient Ru-Mo bimetallic catalyst for selective hydrogenation-rearrangement of furfural-like compounds. The result showed that an unprecedented rearrangement product selectivity of 89.1% to cyclopentanol was achieved under an optimized reaction condition over a 1%Ru−2.5%Mo/CNT catalyst reduced at 600°C. Subsequent characterization suggested that the catalyst presented with weak acidity and strong hydrogenation activity for the reaction, which not only ensures the smooth hydrogenation-rearrangement reaction but also inhibits the accumulation of furan polymers. These findings provide a convenient strategy to tune the catalytic performance of Mo-based catalysts by controlling the reduction and carburization conditions, which appear to be versatile for the rearrangement of furans and similar compounds.
The nanoporous nanoparticles with their surfaces open to reagents enable good electron/mass transport and overall resistance to aggregation, thus significantly important in electrocatalytic applications. Herein, a simple yet efficient swollen...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.