A new mutual coupling calibration method is proposed for adaptive antenna arrays and is employed in the DOA estimations to calibrate the received signals. The new method is developed via the transformation between the embedded element patterns and the isolated element patterns. The new method is characterized by the wide adaptability of element structures such as dipole arrays and microstrip arrays. Additionally, the new method is suitable not only for the linear polarization but also for the circular polarization. It is shown that accurate calibration of the mutual coupling can be obtained for the incident signals in the 3 dB beam width and the wider angle range, and, consequently, accurate [1D] and [2D] DOA estimations can be obtained. Effectiveness of the new calibration method is verified by a linearly polarized microstrip ULA, a circularly polarized microstrip ULA, and a circularly polarized microstrip UCA.
The element pattern reconstruction method is proposed to calibrate the mutual coupling effect of conformal antenna arrays. The calibration matrix due to the proposed calibration method is obtained through the transformation of element patterns rather than the analysis of currents or voltages on the antenna array, which is different from previous calibration methods. The new method can provide effective mutual coupling calibrations for conformal antenna arrays. A conformal microstrip array is designed to verify the effectiveness of the new calibration method.
A new mutual coupling compensation method for wideband adaptive arrays is proposed. The new method is developed by combining the element pattern reconstruction method and the system identification method. The element pattern reconstruction method is valid and effective in the mutual coupling compensation for adaptive arrays such as dipole arrays and microstrip arrays. Each entry of the wideband compensation matrix is represented as an analytical expression against frequency. The polynomial coefficients and orders of all entries are obtained via the system identification method. The new wideband compensation method is characterized by the good adaptability of element structures and polarizations owing to the advantages of element pattern reconstruction method. A wideband microstrip array is designed to test the validity and effectiveness of the wideband compensation method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.