The influence of an amino acid on the stability of alpha-helical structure depends on the position of the residue in the helix with respect to the ends. Short alpha helices in proteins are stabilized both by H-bonding of the main-chain NH and CO groups and by capping interactions between side chains and unfulfilled peptide groups at the N and C termini. Peptide models based on consensus position-dependent helix sequences allow one to model capping effects in isolated helices and to establish a base line for these interactions in proteins. We report here an extended series of substitutions in the cap positions of our peptide models and the solution structure of peptide S3, with serine at the N-cap position defined as the N-terminal residue with partly helix and partly coil conformation. The resulting model, determined by 2D 1H NMR, is consistent with a structure at the N-cap involving H-bonding between the serine gamma oxygen and the peptide NH of the glutamic acid residue three amino acids toward the C terminus. A bifurcated H-bond of Ser O gamma with the NH of Asp5 is possible also, since this group is within interacting distance. This provides direct evidence that specific side-chain interactions with the main chain stabilize isolated alpha-helical structure.
A significant fraction of the amino acids in proteins are alpha helical in conformation. Alpha helices in globular proteins are short, with an average length of about twelve residues, so that residues at the ends of helices make up an important fraction of all helical residues. In the middle of a helix, H-bonds connect the NH and CO groups of each residue to partners four residues along the chain. At the ends of a helix, the H-bond potential of the main chain remains unfulfilled, and helix capping interactions involving bonds from polar side chains to the NH or CO of the backbone have been proposed and detected. In a study of synthetic helical peptides, we have found that the sequence Ser-Glu-Asp-Glu stabilizes the alpha helix in a series of helical peptides with consensus sequences. Following the report by Harper and Rose, which identifies SerXaaXaaGlu as a member of a class of common motifs at the N termini of alpha helices in proteins that they refer to as "capping boxes," we have reexamined the side chain-main chain interactions in a variant sequence using 1H NMR, and find that the postulated reciprocal side chain-backbone bonding between the first Ser and last Glu side chains and their peptide NH partners can be resolved. Deletion of two residues N terminal to the Ser-Glu-Asp-Glu sequence in these peptides has no effect on the initiation of helical structure, as defined by two-dimensional (2D) NMR experiments on this variant.(ABSTRACT TRUNCATED AT 250 WORDS)
Researchers are enthusiastically concerned about neural stem cell (NSC) therapy in a wide array of diseases, including stroke, neurodegenerative disease, spinal cord injury, and depression. Although enormous evidences have demonstrated that neurobehavioral improvement may benefit from NSC-supporting regeneration in animal models, approaches to endogenous and transplanted NSCs are blocked by hurdles of migration, proliferation, maturation, and integration of NSCs. Electrical stimulation (ES) may be a selective non-drug approach for mobilizing NSCs in the central nervous system. This technique is suitable for clinical application, because it is well established and its potential complications are manageable. Here, we provide a comprehensive review of the emerging positive role of different electrical cues in regulating NSC biology in vitro and in vivo, as well as biomaterial-based and chemical stimulation of NSCs. In the future, ES combined with stem cell therapy or other cues probably becomes an approach for promoting brain repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.